메뉴 건너뛰기




Volumn 101, Issue PB, 2014, Pages 79-88

Competing visions? Simulating alternative coastal futures using a GIS-ANN web application

Author keywords

Artificial neural network; Coastal urban areas management; GIS; Multilayer perceptron; Public participation; Scenario building; Web application

Indexed keywords

GEOGRAPHIC INFORMATION SYSTEMS;

EID: 84908378558     PISSN: 09645691     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ocecoaman.2014.09.022     Document Type: Article
Times cited : (26)

References (35)
  • 1
    • 84908378324 scopus 로고    scopus 로고
    • Methods for building scenarios of the environment. European Union ALTER-Net summer school
    • Alcamo Joseph Methods for building scenarios of the environment. European Union ALTER-Net summer school. Trends Biodivers. Eur. Ecosyst. Policy 2007, 1-58.
    • (2007) Trends Biodivers. Eur. Ecosyst. Policy , pp. 1-58
    • Alcamo, J.1
  • 2
    • 84908390003 scopus 로고    scopus 로고
    • Can statistical methods on land-use change patterns calibrate agent-based models?
    • University of Michigan, Eastern Michigan University, USA, August, (accessed 23.08.06)
    • An L., Brown D., Rand W., Page S. Can statistical methods on land-use change patterns calibrate agent-based models?. Proceedings of the 8th International Conference on GeoComputation 2005, University of Michigan, Eastern Michigan University, USA, August, (accessed 23.08.06). http://www.cscs.umich.edu/research/projects/sluce/publications/An_geoco%25mp_%2520abs.pdf.
    • (2005) Proceedings of the 8th International Conference on GeoComputation
    • An, L.1    Brown, D.2    Rand, W.3    Page, S.4
  • 3
    • 84855165824 scopus 로고    scopus 로고
    • An empirical evaluation of the spatial accuracy of public participation GIS (PPGIS) data
    • Brown G. An empirical evaluation of the spatial accuracy of public participation GIS (PPGIS) data. Appl. Geogr. 2012, 34:289-294. 10.1016/j.apgeog.2011.12.004.
    • (2012) Appl. Geogr. , vol.34 , pp. 289-294
    • Brown, G.1
  • 4
    • 79957947756 scopus 로고    scopus 로고
    • Public participation GIS: a new method for use in national park planning
    • Brown G., Weber D. Public participation GIS: a new method for use in national park planning. Landsc. Urban Plan. 2011, 102(1):1-15.
    • (2011) Landsc. Urban Plan. , vol.102 , Issue.1 , pp. 1-15
    • Brown, G.1    Weber, D.2
  • 5
    • 84876331447 scopus 로고    scopus 로고
    • Aplace-based approach to conservation management using public participation GIS (PPGIS)
    • Brown G., Weber D. Aplace-based approach to conservation management using public participation GIS (PPGIS). J.Environ. Plan. Manag. 2012, 56(4):455-473.
    • (2012) J.Environ. Plan. Manag. , vol.56 , Issue.4 , pp. 455-473
    • Brown, G.1    Weber, D.2
  • 6
    • 0012328505 scopus 로고    scopus 로고
    • Public participation using web-based GIS
    • Carver S. Public participation using web-based GIS. Environ. Plan. 2001, 28(6):803-804.
    • (2001) Environ. Plan. , vol.28 , Issue.6 , pp. 803-804
    • Carver, S.1
  • 7
    • 14844322351 scopus 로고    scopus 로고
    • Artificial neural networks applied to landslide susceptibility assessment
    • Ermini L., Catani F., Casagli N. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 2005, 66(1-4):327-343.
    • (2005) Geomorphology , vol.66 , Issue.1-4 , pp. 327-343
    • Ermini, L.1    Catani, F.2    Casagli, N.3
  • 8
    • 84893930146 scopus 로고    scopus 로고
    • Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding
    • Felsenstein D., Lichter M. Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding. Nat. Hazards 2014, 71:463-491.
    • (2014) Nat. Hazards , vol.71 , pp. 463-491
    • Felsenstein, D.1    Lichter, M.2
  • 9
    • 82155199438 scopus 로고    scopus 로고
    • Application of artificial neural network (ANN) to improve forecasting of sea level
    • Filippo A., Torres A., Kjerfve B., Monat A. Application of artificial neural network (ANN) to improve forecasting of sea level. Ocean Coast. Manag. 2012, 55:10-110.
    • (2012) Ocean Coast. Manag. , vol.55 , pp. 10-110
    • Filippo, A.1    Torres, A.2    Kjerfve, B.3    Monat, A.4
  • 10
    • 84889972228 scopus 로고    scopus 로고
    • Expert systems and artificial neural networks for spatial analysis and modelling: essential components for knowledge based geographical information systems
    • Springer, Vienna
    • Fischer M. Expert systems and artificial neural networks for spatial analysis and modelling: essential components for knowledge based geographical information systems. Spatial Analysis and Geocomputation 2006, 61-78. Springer, Vienna.
    • (2006) Spatial Analysis and Geocomputation , pp. 61-78
    • Fischer, M.1
  • 11
    • 84889972445 scopus 로고    scopus 로고
    • Computational neural networks tools for spatial data analysis
    • Springer, Vienna
    • Fischer M. Computational neural networks tools for spatial data analysis. Spatial Analysis and Geocomputation 2006, 78-102. Springer, Vienna.
    • (2006) Spatial Analysis and Geocomputation , pp. 78-102
    • Fischer, M.1
  • 13
    • 0345375364 scopus 로고    scopus 로고
    • Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data
    • Gaudart J., Giusiano B., Huiart L. Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data. Comput. Statistics Data Analysis 2004, 44:547-570.
    • (2004) Comput. Statistics Data Analysis , vol.44 , pp. 547-570
    • Gaudart, J.1    Giusiano, B.2    Huiart, L.3
  • 14
    • 0036170428 scopus 로고    scopus 로고
    • Participatory planning and GIS: a PSS to bridge the gap
    • Geertman S. Participatory planning and GIS: a PSS to bridge the gap. Environ. Plan. B Plan. Des. 2002, 29(1):21-35.
    • (2002) Environ. Plan. B Plan. Des. , vol.29 , Issue.1 , pp. 21-35
    • Geertman, S.1
  • 15
    • 0029749418 scopus 로고    scopus 로고
    • Learning in single hidden-layer feedforward network models: backpropagation in a spatial interaction modelling context
    • (Ohio State University Press)
    • Gopal S., Fischer M. Learning in single hidden-layer feedforward network models: backpropagation in a spatial interaction modelling context. Geogr. Anal. 1996, 28(1). (Ohio State University Press).
    • (1996) Geogr. Anal. , vol.28 , Issue.1
    • Gopal, S.1    Fischer, M.2
  • 16
    • 78649634786 scopus 로고    scopus 로고
    • The role of public participatory geographical information systems (PPGIS) in coastal decision-making processes: an example from Scotland, UK
    • Green D.R. The role of public participatory geographical information systems (PPGIS) in coastal decision-making processes: an example from Scotland, UK. Ocean Coast. Manag. 2010, 53(12):816-821.
    • (2010) Ocean Coast. Manag. , vol.53 , Issue.12 , pp. 816-821
    • Green, D.R.1
  • 17
    • 39949083211 scopus 로고    scopus 로고
    • Mapping ambivalence: exploring the geographies of community change and rails-to-trails development using photo-based Q method and PPGIS
    • Hawthorne T., Krygier J., Kwan M. Mapping ambivalence: exploring the geographies of community change and rails-to-trails development using photo-based Q method and PPGIS. Geoforum 2008, 39(2):1058-1078.
    • (2008) Geoforum , vol.39 , Issue.2 , pp. 1058-1078
    • Hawthorne, T.1    Krygier, J.2    Kwan, M.3
  • 18
    • 84925616643 scopus 로고    scopus 로고
    • Indian Agricultural Statistics Research Institute, New Delhi-11012
    • Kumar A. Artificial Neural Networks 2014, Indian Agricultural Statistics Research Institute, New Delhi-11012.
    • (2014) Artificial Neural Networks
    • Kumar, A.1
  • 20
    • 84908390002 scopus 로고    scopus 로고
    • Neural networks for multidisciplinary approach research, Urban Coastal Area Conflicts Analysis Methodology
    • DigiLab, Sapienza, A. Montanari (Ed.)
    • Londei A. Neural networks for multidisciplinary approach research. Urban Coastal Area Conflicts Analysis Methodology. Human Mobility, Climate Change and Local Sustainable Development 2013, DigiLab, Sapienza. A. Montanari (Ed.).
    • (2013) Human Mobility, Climate Change and Local Sustainable Development
    • Londei, A.1
  • 23
    • 84868150317 scopus 로고    scopus 로고
    • Aweb-based spatial decision support system to enhance public participation in urban planning processes
    • Mansourian A., Taleai M., Fasihi A. Aweb-based spatial decision support system to enhance public participation in urban planning processes. J.Spatial Sci. 2011, 56(2):269-282.
    • (2011) J.Spatial Sci. , vol.56 , Issue.2 , pp. 269-282
    • Mansourian, A.1    Taleai, M.2    Fasihi, A.3
  • 24
    • 0141920457 scopus 로고    scopus 로고
    • Seeking good governance in participatory-GIS. Habitat International
    • McCall M. Seeking good governance in participatory-GIS. Habitat International. J.Name 2003, 27:549-573.
    • (2003) J.Name , vol.27 , pp. 549-573
    • McCall, M.1
  • 25
    • 0037885279 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Dodrecht, Netherlands, (accessed 23.08.06), Birol; Schaale, M. Fast Artificial Neural Network (FANN) Tool 1.0. User's Guide
    • Nowak A., Lewenstein M. In Computer Simulations from the Philosophy of Science Point of View 1996, Kluwer Academic Publishers, Dodrecht, Netherlands, (accessed 23.08.06), pp. 249-285. Birol; Schaale, M. Fast Artificial Neural Network (FANN) Tool 1.0. User's Guide. http://cognitrn.psych.indiana.edu/rgoldsto/complex/nowak.pdf.
    • (1996) In Computer Simulations from the Philosophy of Science Point of View , pp. 249-285
    • Nowak, A.1    Lewenstein, M.2
  • 27
    • 53949120666 scopus 로고    scopus 로고
    • The use of Web 2.0 concepts to support deliberation in spatial decision-making
    • Rinner C., Kessler C., Andrulis S. The use of Web 2.0 concepts to support deliberation in spatial decision-making. Comput. Environ. Urban Syst. 2008, 32(5):386-395.
    • (2008) Comput. Environ. Urban Syst. , vol.32 , Issue.5 , pp. 386-395
    • Rinner, C.1    Kessler, C.2    Andrulis, S.3
  • 28
  • 29
    • 0022471098 scopus 로고
    • Learning representations bybackpropagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations bybackpropagating errors. Nature 1986, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 31
    • 84862998960 scopus 로고    scopus 로고
    • Sustainability and climate adaptation: using google earth to engage stakeholders'
    • Stocker L., Burke G., Kennedy D., Wood D.S. Sustainability and climate adaptation: using google earth to engage stakeholders'. Ecol. Econ. 2012, 80:15-24.
    • (2012) Ecol. Econ. , vol.80 , pp. 15-24
    • Stocker, L.1    Burke, G.2    Kennedy, D.3    Wood, D.S.4
  • 34
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G., Patuwo B., Hu M. Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 1997, 14:35-62.
    • (1997) Int. J. Forecast. , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.2    Hu, M.3
  • 35
    • 39549117765 scopus 로고    scopus 로고
    • Amodel for public involvement in transportation improvement programming using participatory geographic information systems
    • Zhong Tao, Rhonda Young, Mike Lowry, Scott Rutherford G. Amodel for public involvement in transportation improvement programming using participatory geographic information systems. Comput. Environ. Urban Syst. 2007, 32(2):123-133.
    • (2007) Comput. Environ. Urban Syst. , vol.32 , Issue.2 , pp. 123-133
    • Zhong, T.1    Rhonda, Y.2    Mike, L.3    Scott Rutherford, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.