-
1
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
Fujishima A and Honda K 1972 Electrochemical photolysis of water at a semiconductor electrode Nature 238 37-8
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
2
-
-
0000658390
-
Limiting and realizable efficiencies of solar photolysis of water
-
Bolton J R, Strickler S J and Connolly J S 1985 Limiting and realizable efficiencies of solar photolysis of water Nature 316 495-500
-
(1985)
Nature
, vol.316
, pp. 495-500
-
-
Bolton, J.R.1
Strickler, S.J.2
Connolly, J.S.3
-
3
-
-
77953917174
-
2 capture by autothermal catalytic oxyforming of methane
-
2 capture by autothermal catalytic oxyforming of methane Int. J. Hydrogen Energy 35 7454-69
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, pp. 7454-7469
-
-
Budzianowski, W.M.1
-
4
-
-
77956838396
-
Photocatalytic water splitting-recent progress and future challenges
-
Maeda K and Domen K 2010 Photocatalytic water splitting-recent progress and future challenges J. Phys. Chem. Lett. 1 2655-61
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 2655-2661
-
-
Maeda, K.1
Domen, K.2
-
5
-
-
78449288259
-
Semiconductor-based photocatalytic hydrogen generation
-
Chen X B, Shen S H, Guo L J and Mao S S 2010 Semiconductor-based photocatalytic hydrogen generation Chem. Rev. 110 6503-70
-
(2010)
Chem. Rev.
, vol.110
, pp. 6503-6570
-
-
Chen, X.B.1
Shen, S.H.2
Guo, L.J.3
Mao, S.S.4
-
6
-
-
39149102842
-
Inorganic materials as catalysts for photochemical splitting of water
-
Osterloh F E 2008 Inorganic materials as catalysts for photochemical splitting of water Chem. Mater. 20 35-54
-
(2008)
Chem. Mater.
, vol.20
, pp. 35-54
-
-
Osterloh, F.E.1
-
7
-
-
80555150640
-
Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
-
Reece S Y, Hamel J A, Sung K, Jarvi T D, Esswein A J, Pijpers J H, Nocera D G and Reece S Y 2011 Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts Science 334 645-8
-
(2011)
Science
, vol.334
, pp. 645-648
-
-
Reece, S.Y.1
Hamel, J.A.2
Sung, K.3
Jarvi, T.D.4
Esswein, A.J.5
Pijpers, J.H.6
Nocera, D.G.7
Reece, S.Y.8
-
9
-
-
84855169833
-
Analysis of operation of the nanowire photoelectrodes for solar energy conversion
-
Foley J M, Price M J, Feldblyum J I and Maldonado S 2012 Analysis of operation of the nanowire photoelectrodes for solar energy conversion Energy Environ. Sci. 5 5203-20
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 5203-5220
-
-
Foley, J.M.1
Price, M.J.2
Feldblyum, J.I.3
Maldonado, S.4
-
10
-
-
80051583472
-
Highly active and enhanced photocatalytic silicon nanowire arrays
-
Wang F Y, Yang Q D, Xu G, Lei N Y, Tsang Y K, Wong N B and Ho J C 2011 Highly active and enhanced photocatalytic silicon nanowire arrays Nanoscale 3 3269-76
-
(2011)
Nanoscale
, vol.3
, pp. 3269-3276
-
-
Wang, F.Y.1
Yang, Q.D.2
Xu, G.3
Lei, N.Y.4
Tsang, Y.K.5
Wong, N.B.6
Ho, J.C.7
-
11
-
-
79952030330
-
Prediction of silicon nanowires as photocatalysts for water splitting-band structures calculated using density functional theory
-
Zhang R Q, Liu X M, Wen Z and Jiang Q 2011 Prediction of silicon nanowires as photocatalysts for water splitting-band structures calculated using density functional theory J. Phys. Chem. C 115 3425-8
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 3425-3428
-
-
Zhang, R.Q.1
Liu, X.M.2
Wen, Z.3
Jiang, Q.4
-
12
-
-
84855789133
-
Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode
-
Oh I, Kye J and Hwang S 2011 Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode Nano Lett. 12 298-302
-
(2011)
Nano Lett.
, vol.12
, pp. 298-302
-
-
Oh, I.1
Kye, J.2
Hwang, S.3
-
13
-
-
80053900165
-
High performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification
-
Wang X, Peng K Q, Pan X J, Chen X, Yang Y, Li L, Meng X M, Zhang W J and Lee S T 2011 High performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification Angew. Chem. Int. Ed. 50 9861-5
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 9861-9865
-
-
Wang, X.1
Peng, K.Q.2
Pan, X.J.3
Chen, X.4
Yang, Y.5
Li, L.6
Meng, X.M.7
Zhang, W.J.8
Lee, S.T.9
-
14
-
-
35348984409
-
Coaxial silicon nanowires as solar cells and nanoelectronic power sources
-
Tian B, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L and Lieber C M 2007 Coaxial silicon nanowires as solar cells and nanoelectronic power sources Nature 449 885-90
-
(2007)
Nature
, vol.449
, pp. 885-890
-
-
Tian, B.1
Zheng, X.L.2
Kempa, T.J.3
Fang, Y.4
Yu, N.F.5
Yu, G.H.6
Huang, J.L.7
Lieber, C.M.8
-
15
-
-
61649100363
-
2 core-shell nanowire arrays with enhanced photoactivity
-
2 core-shell nanowire arrays with enhanced photoactivity Nano Lett. 9 410-5
-
(2009)
Nano Lett.
, vol.9
, pp. 410-415
-
-
Hwang, Y.J.1
Boukai, A.2
Yang, P.D.3
-
16
-
-
80054687803
-
Si-ZnO core-shell nanowire arrays for photoelectrochemical water splitting
-
Shi M M, Pan X W, Qiu W M, Zheng D X, Xu M S and Chen H Z 2011 Si-ZnO core-shell nanowire arrays for photoelectrochemical water splitting Int. J. Hydrogen Energy 36 15153-9
-
(2011)
Int. J. Hydrogen Energy
, vol.36
, pp. 15153-15159
-
-
Shi, M.M.1
Pan, X.W.2
Qiu, W.M.3
Zheng, D.X.4
Xu, M.S.5
Chen, H.Z.6
-
17
-
-
79955956966
-
Graphene-silicon nanowire Schottky junction for enhanced light harvesting
-
Fan G F, Zhu H W, Wang K L, Wei J Q, Li X M, Shu Q K, Guo N and Wu D H 2011 Graphene-silicon nanowire Schottky junction for enhanced light harvesting ACS Appl. Mater. Interfaces 3 721-5
-
(2011)
ACS Appl. Mater. Interfaces
, vol.3
, pp. 721-725
-
-
Fan, G.F.1
Zhu, H.W.2
Wang, K.L.3
Wei, J.Q.4
Li, X.M.5
Shu, Q.K.6
Guo, N.7
Wu, D.H.8
-
18
-
-
84860321939
-
Metal on metal oxide nanowire Cocatalyzed Si photocathode for solar water splitting
-
Sun K, Madsen K, Andersen P, Bao W N, Sun Z L and Wang D L 2012 Metal on metal oxide nanowire Cocatalyzed Si photocathode for solar water splitting Nanotechnology 23 194013
-
(2012)
Nanotechnology
, vol.23
, pp. 194013
-
-
Sun, K.1
Madsen, K.2
Andersen, P.3
Bao, W.N.4
Sun, Z.L.5
Wang, D.L.6
-
19
-
-
84886992262
-
3D branched nanowire photoelectrochemical electrodes for efficient solar water splitting
-
Kargar A, Sun K, Jing Y, Choi C, Jeong H, Jung G, Jin S and Wang D 2013 3D branched nanowire photoelectrochemical electrodes for efficient solar water splitting ACS Nano 7 9407-15
-
(2013)
ACS Nano
, vol.7
, pp. 9407-9415
-
-
Kargar, A.1
Sun, K.2
Jing, Y.3
Choi, C.4
Jeong, H.5
Jung, G.6
Jin, S.7
Wang, D.8
-
20
-
-
84878736682
-
2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting
-
2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting Nanotechnology 24 265402
-
(2013)
Nanotechnology
, vol.24
, pp. 265402
-
-
Xiong, Z.1
Zheng, M.2
Liu, S.3
Ma, L.4
Shen, W.5
-
21
-
-
84878682819
-
Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting
-
Li X, Lu W, Dong W, Chen Q, Wu D, Zhou W and Chen L 2013 Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting Nanoscale 5 5257-61
-
(2013)
Nanoscale
, vol.5
, pp. 5257-5261
-
-
Li, X.1
Lu, W.2
Dong, W.3
Chen, Q.4
Wu, D.5
Zhou, W.6
Chen, L.7
-
22
-
-
84885456527
-
Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition
-
Dai P, Xie J, Mayer M, Yang X, Zhan J and Wang D 2013 Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition Angew. Chem. Int. Ed. 52 11119-23
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 11119-11123
-
-
Dai, P.1
Xie, J.2
Mayer, M.3
Yang, X.4
Zhan, J.5
Wang, D.6
-
23
-
-
84900991754
-
2 core-shell nanoarrays with sandwiched carbon passivation layer as high efficiency photoelectrode for water splitting
-
2 core-shell nanoarrays with sandwiched carbon passivation layer as high efficiency photoelectrode for water splitting Sci. Rep. 4 4897
-
(2014)
Sci. Rep.
, vol.4
, pp. 4897
-
-
Devarapalli, R.R.1
Debgupta, J.2
Pillai, V.K.3
Shelke, M.V.4
-
24
-
-
79959495747
-
Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
-
Chen Y W, Prange J D, Duhnen S, Park Y, Gunji M, Chidsey C E D and Mclntyre P C 2011 Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation Nat. Mater. 10 539-44
-
(2011)
Nat. Mater.
, vol.10
, pp. 539-544
-
-
Chen, Y.W.1
Prange, J.D.2
Duhnen, S.3
Park, Y.4
Gunji, M.5
Chidsey, C.E.D.6
Mclntyre, P.C.7
-
25
-
-
84896391985
-
3 nanocomposite semiconductors at gas/liquid interface and their photoelectrochemical performances
-
3 nanocomposite semiconductors at gas/liquid interface and their photoelectrochemical performances Appl. Surf. Sci. 299 131-5
-
(2014)
Appl. Surf. Sci.
, vol.299
, pp. 131-135
-
-
Lu, X.1
Pu, F.2
Xia, Y.3
Huang, W.4
Li, Z.5
-
28
-
-
84879534016
-
In situ synthesis of α-β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance
-
Hou J, Yang C, Wang Z, Zhou W, Jiao S and Zhu H 2013 In situ synthesis of α-β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance Appl. Catal. B 142 143 504-11
-
(2013)
Appl. Catal. B
, vol.142-143
, pp. 504-511
-
-
Hou, J.1
Yang, C.2
Wang, Z.3
Zhou, W.4
Jiao, S.5
Zhu, H.6
-
31
-
-
84876848444
-
Roles of graphene oxide in photocatalytic water splitting
-
Yeh T F, Cihlář J, Chang C Y, Cheng C and Teng H 2013 Roles of graphene oxide in photocatalytic water splitting Mater. Today 16 78-84
-
(2013)
Mater. Today
, vol.16
, pp. 78-84
-
-
Yeh, T.F.1
Cihlář, J.2
Chang, C.Y.3
Cheng, C.4
Teng, H.5
-
32
-
-
84881162564
-
Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
-
Abdi F F, Han L, Smets A H M, Zeman M, Dam B and van de Kro R 2013 Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode Nat. Commun. 4 2195
-
(2013)
Nat. Commun.
, vol.4
, pp. 2195
-
-
Abdi, F.F.1
Han, L.2
Smets, A.H.M.3
Zeman, M.4
Dam, B.5
Van De Kro, R.6
-
33
-
-
68749102030
-
2' semiconductor electrode
-
2' semiconductor electrode J. Phys. Chem. C 113 14575-81
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 14575-14581
-
-
Yamane, S.1
Kato, N.2
Kojima, S.3
Imanishi, A.4
Ogawa, S.5
Yoshida, N.6
Nonomura, S.7
Nakato, Y.8
-
34
-
-
84902144692
-
Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
-
at press
-
Hisatomi T, Kubota J and Domen K 2014 Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting Chem. Soc. Rev. at press doi:10.1039/c3cs60378d
-
(2014)
Chem. Soc. Rev.
-
-
Hisatomi, T.1
Kubota, J.2
Domen, K.3
-
35
-
-
84878626771
-
3 heterojunction for degradation of rhodamine 6g under visible light irradiation
-
3 heterojunction for degradation of rhodamine 6g under visible light irradiation Inorg. Chem. 52 6390-401
-
(2013)
Inorg. Chem.
, vol.52
, pp. 6390-6401
-
-
Reddy, K.H.1
Martha, S.2
Parida, K.M.3
-
41
-
-
84894148262
-
4 Core/shell nanowire photoanode for photoelectrochemical water oxidation
-
4 Core/shell nanowire photoanode for photoelectrochemical water oxidation Nano Lett. 14 1099-105
-
(2014)
Nano Lett.
, vol.14
, pp. 1099-1105
-
-
Rao, P.M.1
Cai, L.2
Liu, C.3
Cho, I.S.4
Lee, C.H.5
Weisse, J.M.6
Yang, P.7
Zheng, X.8
-
42
-
-
84860341696
-
Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application
-
Zhang F, Song T and Sun B 2012 Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application Nanotechnology 23 194006
-
(2012)
Nanotechnology
, vol.23
, pp. 194006
-
-
Zhang, F.1
Song, T.2
Sun, B.3
-
43
-
-
84881052314
-
4 single crystals: Intrinsic behavior of a complex metal oxide
-
4 single crystals: intrinsic behavior of a complex metal oxide J. Am. Chem. Soc. 135 11389-96
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 11389-11396
-
-
Rettie, A.J.E.1
Lee, H.C.2
Marshall, L.G.3
Lin, J.F.4
Capan, C.5
Lindemuth, J.6
McCloy, J.S.7
Zhou, J.8
Bard, A.J.9
Mullins, C.B.10
-
44
-
-
84897514531
-
2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction
-
2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction J. Am. Chem. Soc. 136 4897-900
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 4897-4900
-
-
Kong, D.1
Lu Z, W.H.2
Cui, Y.3
|