메뉴 건너뛰기




Volumn 148, Issue , 2015, Pages 150-157

Feature selection algorithm based on bare bones particle swarm optimization

Author keywords

1 Nearest neighbor; Bare bones particle swarm; Feature selection; Reinforced memory; Uniform combination

Indexed keywords

1-NEAREST NEIGHBOR; BARE-BONES PARTICLE SWARM OPTIMIZATIONS; FEATURE SELECTION ALGORITHM; PARTICLE SWARM; UNIFORM COMBINATION;

EID: 84908072362     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.09.049     Document Type: Article
Times cited : (242)

References (31)
  • 1
    • 78650540340 scopus 로고    scopus 로고
    • Applying electromagnetism-like mechanism for feature selection
    • Su C.T., Lin H.C. Applying electromagnetism-like mechanism for feature selection. Inf. Sci. 2011, 181(5):972-986.
    • (2011) Inf. Sci. , vol.181 , Issue.5 , pp. 972-986
    • Su, C.T.1    Lin, H.C.2
  • 4
    • 33644686999 scopus 로고    scopus 로고
    • Optimization-based feature selection with adaptive instance sampling
    • Yang J., Olafsson S. Optimization-based feature selection with adaptive instance sampling. Comput. Oper. Res. 2006, 33(11):3088-3106.
    • (2006) Comput. Oper. Res. , vol.33 , Issue.11 , pp. 3088-3106
    • Yang, J.1    Olafsson, S.2
  • 6
    • 70350705845 scopus 로고    scopus 로고
    • ACO-based hybrid classification system with feature subset selection and model parameters optimization
    • Huang C.L. ACO-based hybrid classification system with feature subset selection and model parameters optimization. Neurocomputing 2009, 73(1-3):438-448.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 438-448
    • Huang, C.L.1
  • 7
    • 50149095980 scopus 로고    scopus 로고
    • Parameter determination of support vector machine and feature selection using simulated annealing approach
    • Lin S.W., Lee Z.J., Chen S.C., Tseng T.Y. Parameter determination of support vector machine and feature selection using simulated annealing approach. Appl. Soft Comput. 2008, 8(4):1505-1512.
    • (2008) Appl. Soft Comput. , vol.8 , Issue.4 , pp. 1505-1512
    • Lin, S.W.1    Lee, Z.J.2    Chen, S.C.3    Tseng, T.Y.4
  • 9
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based onrough sets and particle swarm optimization
    • Wang X., Yang J., Teng X., Xia W., Jensen R. Feature selection based onrough sets and particle swarm optimization. Pattern Recognit. Lett. 2007, 28(4):459-471.
    • (2007) Pattern Recognit. Lett. , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 10
    • 50049085274 scopus 로고    scopus 로고
    • Comparison of population based metaheuristics for feature selection: application to microarray data classification
    • E.G. Talbi, L. Jourdan, J. Garcia-Nieto, E. Alba, Comparison of population based metaheuristics for feature selection: application to microarray data classification, in: Proceedings of AICCSA, 2008.
    • (2008) Proceedings of AICCSA
    • Talbi, E.G.1    Jourdan, L.2    Garcia-Nieto, J.3    Alba, E.4
  • 11
    • 77957925386 scopus 로고    scopus 로고
    • Chaotic maps based on binary particle swarm optimization for feature selection
    • Chuang L.Y., Yang C.H., Li J.C. Chaotic maps based on binary particle swarm optimization for feature selection. Appl. Soft Comput. 2011, 11(1):239-248.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.1 , pp. 239-248
    • Chuang, L.Y.1    Yang, C.H.2    Li, J.C.3
  • 12
    • 77951139898 scopus 로고    scopus 로고
    • A discrete particle swarm optimization method for feature selection in binary classification problems
    • Alper U., Alper M. A discrete particle swarm optimization method for feature selection in binary classification problems. Eur. J. Oper. Res. 2010, 206:528-539.
    • (2010) Eur. J. Oper. Res. , vol.206 , pp. 528-539
    • Alper, U.1    Alper, M.2
  • 13
    • 79957997225 scopus 로고    scopus 로고
    • Gene selection and classification using Taguchi chaotic binary particle swarm optimization
    • Chuang L.Y., Yang C.S., Wu K.C., Yang C.H. Gene selection and classification using Taguchi chaotic binary particle swarm optimization. Expert Syst. Appl. 2011, 38:13367-13377.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 13367-13377
    • Chuang, L.Y.1    Yang, C.S.2    Wu, K.C.3    Yang, C.H.4
  • 14
    • 34548269905 scopus 로고    scopus 로고
    • Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients
    • Tripathi P.K., Bandyopadhyay S., Pal S.K. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf. Sci. 2007, 177(22):5033-5049.
    • (2007) Inf. Sci. , vol.177 , Issue.22 , pp. 5033-5049
    • Tripathi, P.K.1    Bandyopadhyay, S.2    Pal, S.K.3
  • 17
    • 78650624562 scopus 로고    scopus 로고
    • Novel bare bones particle swarm optimization and its performance for modeling vapor-liquid equilibrium data
    • Zhang H., Kennedy D.D., Rangaiah G.P., et al. Novel bare bones particle swarm optimization and its performance for modeling vapor-liquid equilibrium data. Fluid Phase Equilib. 2010, 301:33-45.
    • (2010) Fluid Phase Equilib. , vol.301 , pp. 33-45
    • Zhang, H.1    Kennedy, D.D.2    Rangaiah, G.P.3
  • 18
    • 84857912046 scopus 로고    scopus 로고
    • Barebones multi-objective particle swarm optimization for environmental/economic dispatch
    • Zhang Y., Gong D.W., Ding Z.H. Barebones multi-objective particle swarm optimization for environmental/economic dispatch. Inf. Sci. 2012, 192(1):213-227.
    • (2012) Inf. Sci. , vol.192 , Issue.1 , pp. 213-227
    • Zhang, Y.1    Gong, D.W.2    Ding, Z.H.3
  • 22
    • 0003909532 scopus 로고
    • Discriminatory Analysis-nonparametric Discrimination: Consistency Properties.
    • Project 21-49-004, Report 4, US Air Force School of Aviation Medicine, Randolph Field
    • E. Fix, J.L. Hodges, Discriminatory Analysis-nonparametric Discrimination: Consistency Properties. Project 21-49-004, Report 4, US Air Force School of Aviation Medicine, Randolph Field, 1951, pp. 261-279.
    • (1951) , pp. 261-279
    • Fix, E.1    Hodges, J.L.2
  • 23
    • 84863387880 scopus 로고    scopus 로고
    • UCI Repository of Machine Learning Databases.
    • Technical report, Department of Information and Computer Science, University of California, Irvine, California. Available at:
    • P.M. Murphy, D.W. Aha, UCI Repository of Machine Learning Databases. Technical report, Department of Information and Computer Science, University of California, Irvine, California. Available at: http://www.ics.uci.edu/~mlearn/~MLRepository.html.
    • Murphy, P.M.1    Aha, D.W.2
  • 24
    • 79957970608 scopus 로고    scopus 로고
    • Improved binary particle swarm optimization using catfish effect for feature selection
    • Chuang L.Y., Tsai S.W., Yang C.H. Improved binary particle swarm optimization using catfish effect for feature selection. Expert Syst. Appl. 2011, 38:12699-12707.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 12699-12707
    • Chuang, L.Y.1    Tsai, S.W.2    Yang, C.H.3
  • 25
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • Clerc M., Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6(1):58-72.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.1 , pp. 58-72
    • Clerc, M.1    Kennedy, J.2
  • 26
    • 31944448941 scopus 로고    scopus 로고
    • A study of particle swarm optimization particle trajectories
    • Van den Bergh F., Engelbrecht A. A study of particle swarm optimization particle trajectories. Inf. Sci. 2006, 176(8):937-971.
    • (2006) Inf. Sci. , vol.176 , Issue.8 , pp. 937-971
    • Van den Bergh, F.1    Engelbrecht, A.2
  • 27
    • 79956078202 scopus 로고    scopus 로고
    • MO-TRIBES, an adaptive multiobjective particle swarm optimization algorithm
    • Cooren Y., Clerc M., Siarry P. MO-TRIBES, an adaptive multiobjective particle swarm optimization algorithm. Comput. Optim. Appl. 2011, 49(2):379-400.
    • (2011) Comput. Optim. Appl. , vol.49 , Issue.2 , pp. 379-400
    • Cooren, Y.1    Clerc, M.2    Siarry, P.3
  • 28
    • 38849205466 scopus 로고    scopus 로고
    • A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem
    • Pan Q.K., Tasgetiren M.F., Liang Y.C. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput. Oper. Res. 2008, 35(9):2807-2839.
    • (2008) Comput. Oper. Res. , vol.35 , Issue.9 , pp. 2807-2839
    • Pan, Q.K.1    Tasgetiren, M.F.2    Liang, Y.C.3
  • 29
    • 56749158477 scopus 로고    scopus 로고
    • No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm
    • Pan Q.K., Wang L. No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm. Int. J. Adv. Manuf. Technol. 2008, 39(7-8):796-807.
    • (2008) Int. J. Adv. Manuf. Technol. , vol.39 , Issue.7-8 , pp. 796-807
    • Pan, Q.K.1    Wang, L.2
  • 30
    • 84857503749 scopus 로고    scopus 로고
    • Optimizing the vehicle routing problem with time windows. a discrete particle swarm optimization approach
    • Gong Y.J., Zhang J., Liu Q., et al. Optimizing the vehicle routing problem with time windows. a discrete particle swarm optimization approach. IEEE Trans. Syst., Man Cybern. C: Appl. Rev. 2012, 42(2):254-267.
    • (2012) IEEE Trans. Syst., Man Cybern. C: Appl. Rev. , vol.42 , Issue.2 , pp. 254-267
    • Gong, Y.J.1    Zhang, J.2    Liu, Q.3
  • 31
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • Mann H.B., Whitney D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18(1):50-60.
    • (1947) Ann. Math. Stat. , vol.18 , Issue.1 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.