-
1
-
-
84862232768
-
Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis
-
Apweiler, E., K. Sameith, T. Margaritis, N. Brabers, L. Van De Pasch et al., 2012 Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis. BMC Genomics 13: 239.
-
(2012)
BMC Genomics
, vol.13
, pp. 239
-
-
Apweiler, E.1
Sameith, K.2
Margaritis, T.3
Brabers, N.4
Van De Pasch, L.5
-
2
-
-
0015093048
-
Effect of 2- deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition
-
Biely, P., Z. Kratky, J. Kovarik, and S. Bauer, 1971 Effect of 2- deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition. J. Bacteriol. 107: 121–129.
-
(1971)
J. Bacteriol
, vol.107
, pp. 121-129
-
-
Biely, P.1
Kratky, Z.2
Kovarik, J.3
Bauer, S.4
-
3
-
-
78650632764
-
Phosphoproteomic analysis reveals interconnected systemwide responses to perturbations of kinases and phosphatases in yeast
-
rs
-
Bodenmiller, B., S. Wanka, C. Kraft, J. Urban, D. Campbell et al., 2010 Phosphoproteomic analysis reveals interconnected systemwide responses to perturbations of kinases and phosphatases in yeast. Sci. Signal. 3: rs 4.
-
(2010)
Sci. Signal
, vol.3
, pp. 4
-
-
Bodenmiller, B.1
Wanka, S.2
Kraft, C.3
Urban, J.4
Campbell, D.5
-
4
-
-
84903906735
-
Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling. Sci
-
Braun, K. A., S. Vaga, K. M. Dombek, F. Fang, S. Palmisano et al., 2014 Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling. Sci. Signal. 7: ra 64.
-
(2014)
Signal
, vol.7
, pp. 64
-
-
Braun, K.A.1
Vaga, S.2
Dombek, K.M.3
Fang, F.4
Palmisano, S.5
-
5
-
-
84872079812
-
Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation
-
Chandrashekarappa, D. G., R. R. McCartney, and M. C. Schmidt, 2013 Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. J. Biol. Chem. 288: 89–98.
-
(2013)
J. Biol. Chem
, vol.288
, pp. 89-98
-
-
Chandrashekarappa, D.G.1
McCartney, R.R.2
Schmidt, M.C.3
-
6
-
-
77953414533
-
Snf1 promotes phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit 4
-
Cherkasova, V., H. Qiu, and A. G. Hinnebusch, 2010 Snf1 promotes phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit 4. Mol. Cell. Biol. 30: 2862–2873.
-
(2010)
Mol. Cell. Biol
, vol.30
, pp. 2862-2873
-
-
Cherkasova, V.1
Qiu, H.2
Hinnebusch, A.G.3
-
7
-
-
70349124647
-
Activation of decapping involves binding of the mRNA and facilitation of the post-binding steps by the Lsm1–7-Pat1 complex
-
Chowdhury, A., and S. Tharun, 2009 Activation of decapping involves binding of the mRNA and facilitation of the post-binding steps by the Lsm1–7-Pat1 complex. RNA 15: 1837–1848.
-
(2009)
RNA
, vol.15
, pp. 1837-1848
-
-
Chowdhury, A.1
Tharun, S.2
-
8
-
-
0029858087
-
Differential requirement of the yeast sugar kinases for sugar sensing in establishing the cataboliterepressed state
-
De Winde, J. H., M. Crauwels, S. Hohmann, J. M. Thevelein, and J. Winderickx, 1996 Differential requirement of the yeast sugar kinases for sugar sensing in establishing the cataboliterepressed state. Eur. J. Biochem. 241: 633–643.
-
(1996)
Eur. J. Biochem
, vol.241
, pp. 633-643
-
-
De Winde, J.H.1
Crauwels, M.2
Hohmann, S.3
Thevelein, J.M.4
Winderickx, J.5
-
9
-
-
0032812343
-
Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression
-
Dombek, K. M., V. Voronkova, A. Raney, and E. T. Young, 1999 Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression. Mol. Cell. Biol. 19: 6029–6040.
-
(1999)
Mol. Cell. Biol
, vol.19
, pp. 6029-6040
-
-
Dombek, K.M.1
Voronkova, V.2
Raney, A.3
Young, E.T.4
-
10
-
-
1542284052
-
The protein kinase Snf1 is required for tolerance to the ribonucleotide reductase inhibitor hydroxyurea
-
Dubacq, C., A. Chevalier, and C. Mann, 2004 The protein kinase Snf1 is required for tolerance to the ribonucleotide reductase inhibitor hydroxyurea. Mol. Cell. Biol. 24: 2560–2572.
-
(2004)
Mol. Cell. Biol
, vol.24
, pp. 2560-2572
-
-
Dubacq, C.1
Chevalier, A.2
Mann, C.3
-
11
-
-
0018845565
-
Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae
-
Entian, K. D., and F. K. Zimmermann, 1980 Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae. Mol. Gen. Genet. 177: 345–350.
-
(1980)
Mol. Gen. Genet
, pp. 177-350
-
-
Entian, K.D.1
Zimmermann, F.K.2
-
12
-
-
0343471377
-
Modification of a PCR-based sitedirected mutagenesis method
-
Fisher, C. L., and G. K. Pei, 1997 Modification of a PCR-based sitedirected mutagenesis method. Biotechniques 23: 570–574.
-
(1997)
Biotechniques
, vol.23
, pp. 570-574
-
-
Fisher, C.L.1
Pei, G.K.2
-
13
-
-
77954375794
-
2010 6-Phosphogluconate dehydrogenase mechanism: Evidence for allosteric modulation by substrate
-
Hanau, S., K. Montin, C. Cervellati, M. Magnani, and F. Dallocchio, 2010 6-Phosphogluconate dehydrogenase mechanism: evidence for allosteric modulation by substrate. J. Biol. Chem. 285: 21366–21371.
-
J. Biol. Chem
, vol.285
, pp. 21366-21371
-
-
Hanau, S.1
Montin, K.2
Cervellati, C.3
Magnani, M.4
Dallocchio, F.5
-
14
-
-
38449110592
-
SNF1/AMPK pathways in yeast
-
Hedbacker, K., and M. Carlson, 2008 SNF1/AMPK pathways in yeast. Front. Biosci. 13: 2408–2420.
-
(2008)
Front. Biosci
, vol.13
, pp. 2408-2420
-
-
Hedbacker, K.1
Carlson, M.2
-
15
-
-
0024026418
-
Saccharomyces cerevisiae acquires resistance to 2-deoxyglucose at a very high frequency
-
Heredia, M. F., and C. F. Heredia, 1988 Saccharomyces cerevisiae acquires resistance to 2-deoxyglucose at a very high frequency. J. Bacteriol. 170: 2870–2872.
-
(1988)
J. Bacteriol
, vol.170
, pp. 2870-2872
-
-
Heredia, M.F.1
Heredia, C.F.2
-
16
-
-
34447128162
-
Regulation of snf1 protein kinase in response to environmental stress
-
Hong, S. P., and M. Carlson, 2007 Regulation of snf1 protein kinase in response to environmental stress. J. Biol. Chem. 282: 16838–16845.
-
(2007)
J. Biol. Chem
, vol.282
, pp. 16838-16845
-
-
Hong, S.P.1
Carlson, M.2
-
17
-
-
0041305909
-
Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
-
USA
-
Hong, S. P., F. C. Leiper, A. Woods, D. Carling, and M. Carlson, 2003 Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. USA 100: 8839–8843.
-
(2003)
Proc. Natl. Acad. Sci
, vol.100
, pp. 8839-8843
-
-
Hong, S.P.1
Leiper, F.C.2
Woods, A.3
Carling, D.4
Carlson, M.5
-
18
-
-
0014259864
-
Lysis of yeast cell walls induced by 2- deoxyglucose at their sites of glucan synthesis
-
Johnson, B. F., 1968 Lysis of yeast cell walls induced by 2- deoxyglucose at their sites of glucan synthesis. J. Bacteriol. 95: 1169–1172.
-
(1968)
J. Bacteriol
, vol.95
, pp. 1169-1172
-
-
Johnson, B.F.1
-
19
-
-
0038735287
-
Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit
-
Leech, A., N. Nath, R. R. McCartney, and M. C. Schmidt, 2003 Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit. Eukaryot. Cell 2: 265–273.
-
(2003)
Eukaryot. Cell
, pp. 2-273
-
-
Leech, A.1
Nath, N.2
McCartney, R.R.3
Schmidt, M.C.4
-
20
-
-
0030874516
-
Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: Coupling glucose sensing to gene expression and the cell cycle
-
Li, F. N., and M. Johnston, 1997 Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J. 16: 5629–5638.
-
(1997)
EMBO J
, vol.16
, pp. 5629-5638
-
-
Li, F.N.1
Johnston, M.2
-
21
-
-
0035965277
-
Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
-
McCartney, R. R., and M. C. Schmidt, 2001 Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276: 36460–3646.
-
(2001)
J. Biol. Chem
, vol.276
, pp. 36460-43646
-
-
McCartney, R.R.1
Schmidt, M.C.2
-
22
-
-
0023140958
-
Mutations causing constitutive invertase synthesis in yeast: Genetic interactions with snf mutations
-
Neigeborn, L., and M. Carlson, 1987 Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115: 247–253.
-
(1987)
Genetics
, vol.115
, pp. 247-253
-
-
Neigeborn, L.1
Carlson, M.2
-
23
-
-
56649106338
-
Detection of endogenous Snf1 and its activation state: Application to Saccharomyces and Candida species
-
Orlova, M., L. Barrett, and S. Kuchin, 2008 Detection of endogenous Snf1 and its activation state: application to Saccharomyces and Candida species. Yeast 25: 745–754.
-
(2008)
Yeast
, vol.25
, pp. 745-754
-
-
Orlova, M.1
Barrett, L.2
Kuchin, S.3
-
24
-
-
78649735310
-
Functional domains of yeast hexokinase 2
-
Pelaez, R., P. Herrero, and F. Moreno, 2010 Functional domains of yeast hexokinase 2. Biochem. J. 432: 181–190.
-
(2010)
Biochem. J
, vol.432
, pp. 181-190
-
-
Pelaez, R.1
Herrero, P.2
Moreno, F.3
-
25
-
-
33746879141
-
Glycolysis inhibition for anticancer treatment
-
Pelicano, H., D. S. Martin, R. H. Xu, and P. Huang, 2006 Glycolysis inhibition for anticancer treatment. Oncogene 25: 4633–4646.
-
(2006)
Oncogene
, vol.25
, pp. 4633-4646
-
-
Pelicano, H.1
Martin, D.S.2
Xu, R.H.3
Huang, P.4
-
26
-
-
11844258269
-
A role for the nonphosphorylated form of yeast Snf1: Tolerance to toxic cations and activation of potassium transport
-
Portillo, F., J. M. Mulet, and R. Serrano, 2005 A role for the nonphosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Lett. 579: 512–516.
-
(2005)
FEBS Lett
, vol.579
, pp. 512-516
-
-
Portillo, F.1
Mulet, J.M.2
Serrano, R.3
-
27
-
-
84874116164
-
A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors
-
Raez, L. E., K. Papadopoulos, A. D. Ricart, E.G. Chiorean, R. S. Dipaola et al., 2013 A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 71: 523–530.
-
(2013)
Cancer Chemother. Pharmacol
, vol.71
, pp. 523-530
-
-
Raez, L.E.1
Papadopoulos, K.2
Ricart, A.D.3
Chiorean, E.G.4
Dipaola, R.S.5
-
28
-
-
56649095959
-
A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth
-
Ralser, M., M. M. Wamelink, E. A. Struys, C. Joppich, S. Krobitsch et al., 2008 A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proc. Natl. Acad. Sci. USA 105: 17807–1781.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 17807-21781
-
-
Ralser, M.1
Wamelink, M.M.2
Struys, E.A.3
Joppich, C.4
Krobitsch, S.5
-
29
-
-
0029112344
-
The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast
-
Randez-Gil, F., J. A. Prieto, and P. Sanz, 1995 The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast. Curr. Genet. 28: 101–107.
-
(1995)
Curr. Genet
, vol.28
, pp. 101-107
-
-
Randez-Gil, F.1
Prieto, J.A.2
Sanz, P.3
-
30
-
-
0003529272
-
-
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
-
Rose, M. D., F. Winston, and P. Hieter (Editors), 1990 Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
-
(1990)
Methods in Yeast Genetics
-
-
Rose, M.D.1
Winston, F.2
Hieter, P.3
-
31
-
-
0019540802
-
An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae
-
Schild, D., H. N. Ananthaswamy, and R. K. Mortimer, 1981 An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae. Genetics 97: 551–562.
-
(1981)
Genetics
, vol.97
, pp. 551-562
-
-
Schild, D.1
Ananthaswamy, H.N.2
Mortimer, R.K.3
-
32
-
-
0034665041
-
Beta-subunits of Snf1 kinase are required for kinase function and substrate definition
-
Schmidt, M. C., and R. R. McCartney, 2000 beta-subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J. 19: 4936–4943.
-
(2000)
EMBO J
, vol.19
, pp. 4936-4943
-
-
Schmidt, M.C.1
McCartney, R.R.2
-
33
-
-
0026090455
-
Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes
-
Schuller, H. J., and K. D. Entian, 1991 Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes. J. Bacteriol. 173: 2045–2052.
-
(1991)
J. Bacteriol
, vol.173
, pp. 2045-2052
-
-
Schuller, H.J.1
Entian, K.D.2
-
34
-
-
58149092197
-
A chemical genomics study identifies Snf1 as a repressor of GCN4 translation
-
Shirra, M. K., R. R. McCartney, C. Zhang, K. M. Shokat, M. C. Schmidt et al., 2008 A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J. Biol. Chem. 283: 35889–35898.
-
(2008)
J. Biol. Chem
, vol.283
, pp. 35889-35898
-
-
Shirra, M.K.1
McCartney, R.R.2
Zhang, C.3
Shokat, K.M.4
Schmidt, M.C.5
-
35
-
-
0032768263
-
The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1
-
Smith, F. C., S. P. Davies, W. A. Wilson, D. Carling, and D. G. Hardie, 1999 The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1. FEBS Lett. 453: 219–223.
-
(1999)
FEBS Lett
, vol.453
, pp. 219-223
-
-
Smith, F.C.1
Davies, S.P.2
Wilson, W.A.3
Carling, D.4
Hardie, D.G.5
-
36
-
-
0041700137
-
Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex
-
Sutherland, C. M., S. A. Hawley, R. R. McCartney, A. Leech, M. J. Stark et al., 2003 Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr. Biol. 13: 1299–1305.
-
(2003)
Curr. Biol
, vol.13
, pp. 1299-1305
-
-
Sutherland, C.M.1
Hawley, S.A.2
McCartney, R.R.3
Leech, A.4
Stark, M.J.5
-
37
-
-
77952293012
-
PP1 phosphatase-binding motif in Reg1 protein of Saccharomyces cerevisiae is required for interaction with both the PP1 phosphatase Glc7 and the Snf1 protein kinase
-
Tabba, S., S. Mangat, R. Mccartney, and M. C. Schmidt, 2010 PP1 phosphatase-binding motif in Reg1 protein of Saccharomyces cerevisiae is required for interaction with both the PP1 phosphatase Glc7 and the Snf1 protein kinase. Cell. Signal. 22: 1013–1021.
-
(2010)
Cell. Signal
, vol.22
, pp. 1013-1021
-
-
Tabba, S.1
Mangat, S.2
McCartney, R.3
Schmidt, M.C.4
-
38
-
-
0028969607
-
A novel approach for investigating reaction mechanisms in cells. Mechanism of deoxy-trehalose synthesis in Saccharomyces cerevisiae studied by 1H-NMR spectroscopy
-
Tran-Dinh, S., J. Wietzerbin, A. Courtois, and M. Herve, 1995 A novel approach for investigating reaction mechanisms in cells. Mechanism of deoxy-trehalose synthesis in Saccharomyces cerevisiae studied by 1H-NMR spectroscopy. Eur. J. Biochem. 228: 727–731.
-
(1995)
Eur. J. Biochem
, vol.228
, pp. 727-731
-
-
Tran-Dinh, S.1
Wietzerbin, J.2
Courtois, A.3
Herve, M.4
-
39
-
-
0031740335
-
Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
-
Treitel, M. A., S. Kuchin, and M. Carlson, 1998 Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 6273–6280.
-
(1998)
Mol. Cell. Biol
, vol.18
, pp. 6273-6280
-
-
Treitel, M.A.1
Kuchin, S.2
Carlson, M.3
-
40
-
-
0028894928
-
REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae
-
Tu, J., and M. Carlson, 1995 REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 14: 5939–5946.
-
(1995)
EMBO J
, vol.14
, pp. 5939-5946
-
-
Tu, J.1
Carlson, M.2
-
41
-
-
0033529707
-
Functional characterization of the S. cerevisiaegenome by gene deletion and parallel analysis
-
Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson et al., 1999 Functional characterization of the S. cerevisiaegenome by gene deletion and parallel analysis. Science 285: 901–906.
-
(1999)
Science
, vol.285
, pp. 901-906
-
-
Winzeler, E.A.1
Shoemaker, D.D.2
Astromoff, A.3
Liang, H.4
Anderson, K.5
-
42
-
-
53449102442
-
The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation
-
Ye, T., K. Elbing, and S. Hohmann, 2008 The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation. Microbiology 154: 2814–2826.
-
(2008)
Microbiology
, vol.154
, pp. 2814-2826
-
-
Ye, T.1
Elbing, K.2
Hohmann, S.3
-
43
-
-
84865218513
-
The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae
-
Young, E. T., C. Zhang, K. M. Shokat, P. K. Parua, and K. A. Braun, 2012 The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. J. Biol. Chem. 287: 29021–29034.
-
(2012)
J. Biol. Chem
, vol.287
, pp. 29021-29034
-
-
Young, E.T.1
Zhang, C.2
Shokat, K.M.3
Parua, P.K.4
Braun, K.A.5
-
44
-
-
0017408123
-
Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression
-
Zimmermann, F. K., and I. Scheel, 1977 Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Mol. Gen. Genet. 154: 75–82.
-
(1977)
Mol. Gen. Genet
, vol.154
, pp. 75-82
-
-
Zimmermann, F.K.1
Scheel, I.2
|