메뉴 건너뛰기




Volumn 198, Issue 2, 2014, Pages 635-646

Genetic analysis of resistance and sensitivity to 2-deoxyglucose in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

DEOXYGLUCOSE; GLUCOSE; MIG1 PROTEIN; PROTEIN KINASE; SNF1 KINASE; UNCLASSIFIED DRUG; MIG1 PROTEIN, S CEREVISIAE; PROTEIN SERINE THREONINE KINASE; REPRESSOR PROTEIN; SACCHAROMYCES CEREVISIAE PROTEIN; SNF1-RELATED PROTEIN KINASES;

EID: 84908031888     PISSN: 00166731     EISSN: 19432631     Source Type: Journal    
DOI: 10.1534/genetics.114.169060     Document Type: Article
Times cited : (41)

References (44)
  • 1
    • 84862232768 scopus 로고    scopus 로고
    • Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis
    • Apweiler, E., K. Sameith, T. Margaritis, N. Brabers, L. Van De Pasch et al., 2012 Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis. BMC Genomics 13: 239.
    • (2012) BMC Genomics , vol.13 , pp. 239
    • Apweiler, E.1    Sameith, K.2    Margaritis, T.3    Brabers, N.4    Van De Pasch, L.5
  • 2
    • 0015093048 scopus 로고
    • Effect of 2- deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition
    • Biely, P., Z. Kratky, J. Kovarik, and S. Bauer, 1971 Effect of 2- deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition. J. Bacteriol. 107: 121–129.
    • (1971) J. Bacteriol , vol.107 , pp. 121-129
    • Biely, P.1    Kratky, Z.2    Kovarik, J.3    Bauer, S.4
  • 3
    • 78650632764 scopus 로고    scopus 로고
    • Phosphoproteomic analysis reveals interconnected systemwide responses to perturbations of kinases and phosphatases in yeast
    • rs
    • Bodenmiller, B., S. Wanka, C. Kraft, J. Urban, D. Campbell et al., 2010 Phosphoproteomic analysis reveals interconnected systemwide responses to perturbations of kinases and phosphatases in yeast. Sci. Signal. 3: rs 4.
    • (2010) Sci. Signal , vol.3 , pp. 4
    • Bodenmiller, B.1    Wanka, S.2    Kraft, C.3    Urban, J.4    Campbell, D.5
  • 4
    • 84903906735 scopus 로고    scopus 로고
    • Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling. Sci
    • Braun, K. A., S. Vaga, K. M. Dombek, F. Fang, S. Palmisano et al., 2014 Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling. Sci. Signal. 7: ra 64.
    • (2014) Signal , vol.7 , pp. 64
    • Braun, K.A.1    Vaga, S.2    Dombek, K.M.3    Fang, F.4    Palmisano, S.5
  • 5
    • 84872079812 scopus 로고    scopus 로고
    • Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation
    • Chandrashekarappa, D. G., R. R. McCartney, and M. C. Schmidt, 2013 Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. J. Biol. Chem. 288: 89–98.
    • (2013) J. Biol. Chem , vol.288 , pp. 89-98
    • Chandrashekarappa, D.G.1    McCartney, R.R.2    Schmidt, M.C.3
  • 6
    • 77953414533 scopus 로고    scopus 로고
    • Snf1 promotes phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit 4
    • Cherkasova, V., H. Qiu, and A. G. Hinnebusch, 2010 Snf1 promotes phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit 4. Mol. Cell. Biol. 30: 2862–2873.
    • (2010) Mol. Cell. Biol , vol.30 , pp. 2862-2873
    • Cherkasova, V.1    Qiu, H.2    Hinnebusch, A.G.3
  • 7
    • 70349124647 scopus 로고    scopus 로고
    • Activation of decapping involves binding of the mRNA and facilitation of the post-binding steps by the Lsm1–7-Pat1 complex
    • Chowdhury, A., and S. Tharun, 2009 Activation of decapping involves binding of the mRNA and facilitation of the post-binding steps by the Lsm1–7-Pat1 complex. RNA 15: 1837–1848.
    • (2009) RNA , vol.15 , pp. 1837-1848
    • Chowdhury, A.1    Tharun, S.2
  • 8
    • 0029858087 scopus 로고    scopus 로고
    • Differential requirement of the yeast sugar kinases for sugar sensing in establishing the cataboliterepressed state
    • De Winde, J. H., M. Crauwels, S. Hohmann, J. M. Thevelein, and J. Winderickx, 1996 Differential requirement of the yeast sugar kinases for sugar sensing in establishing the cataboliterepressed state. Eur. J. Biochem. 241: 633–643.
    • (1996) Eur. J. Biochem , vol.241 , pp. 633-643
    • De Winde, J.H.1    Crauwels, M.2    Hohmann, S.3    Thevelein, J.M.4    Winderickx, J.5
  • 9
    • 0032812343 scopus 로고    scopus 로고
    • Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression
    • Dombek, K. M., V. Voronkova, A. Raney, and E. T. Young, 1999 Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression. Mol. Cell. Biol. 19: 6029–6040.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 6029-6040
    • Dombek, K.M.1    Voronkova, V.2    Raney, A.3    Young, E.T.4
  • 10
    • 1542284052 scopus 로고    scopus 로고
    • The protein kinase Snf1 is required for tolerance to the ribonucleotide reductase inhibitor hydroxyurea
    • Dubacq, C., A. Chevalier, and C. Mann, 2004 The protein kinase Snf1 is required for tolerance to the ribonucleotide reductase inhibitor hydroxyurea. Mol. Cell. Biol. 24: 2560–2572.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 2560-2572
    • Dubacq, C.1    Chevalier, A.2    Mann, C.3
  • 11
    • 0018845565 scopus 로고
    • Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae
    • Entian, K. D., and F. K. Zimmermann, 1980 Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae. Mol. Gen. Genet. 177: 345–350.
    • (1980) Mol. Gen. Genet , pp. 177-350
    • Entian, K.D.1    Zimmermann, F.K.2
  • 12
    • 0343471377 scopus 로고    scopus 로고
    • Modification of a PCR-based sitedirected mutagenesis method
    • Fisher, C. L., and G. K. Pei, 1997 Modification of a PCR-based sitedirected mutagenesis method. Biotechniques 23: 570–574.
    • (1997) Biotechniques , vol.23 , pp. 570-574
    • Fisher, C.L.1    Pei, G.K.2
  • 13
    • 77954375794 scopus 로고    scopus 로고
    • 2010 6-Phosphogluconate dehydrogenase mechanism: Evidence for allosteric modulation by substrate
    • Hanau, S., K. Montin, C. Cervellati, M. Magnani, and F. Dallocchio, 2010 6-Phosphogluconate dehydrogenase mechanism: evidence for allosteric modulation by substrate. J. Biol. Chem. 285: 21366–21371.
    • J. Biol. Chem , vol.285 , pp. 21366-21371
    • Hanau, S.1    Montin, K.2    Cervellati, C.3    Magnani, M.4    Dallocchio, F.5
  • 14
    • 38449110592 scopus 로고    scopus 로고
    • SNF1/AMPK pathways in yeast
    • Hedbacker, K., and M. Carlson, 2008 SNF1/AMPK pathways in yeast. Front. Biosci. 13: 2408–2420.
    • (2008) Front. Biosci , vol.13 , pp. 2408-2420
    • Hedbacker, K.1    Carlson, M.2
  • 15
    • 0024026418 scopus 로고
    • Saccharomyces cerevisiae acquires resistance to 2-deoxyglucose at a very high frequency
    • Heredia, M. F., and C. F. Heredia, 1988 Saccharomyces cerevisiae acquires resistance to 2-deoxyglucose at a very high frequency. J. Bacteriol. 170: 2870–2872.
    • (1988) J. Bacteriol , vol.170 , pp. 2870-2872
    • Heredia, M.F.1    Heredia, C.F.2
  • 16
    • 34447128162 scopus 로고    scopus 로고
    • Regulation of snf1 protein kinase in response to environmental stress
    • Hong, S. P., and M. Carlson, 2007 Regulation of snf1 protein kinase in response to environmental stress. J. Biol. Chem. 282: 16838–16845.
    • (2007) J. Biol. Chem , vol.282 , pp. 16838-16845
    • Hong, S.P.1    Carlson, M.2
  • 17
    • 0041305909 scopus 로고    scopus 로고
    • Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
    • USA
    • Hong, S. P., F. C. Leiper, A. Woods, D. Carling, and M. Carlson, 2003 Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. USA 100: 8839–8843.
    • (2003) Proc. Natl. Acad. Sci , vol.100 , pp. 8839-8843
    • Hong, S.P.1    Leiper, F.C.2    Woods, A.3    Carling, D.4    Carlson, M.5
  • 18
    • 0014259864 scopus 로고
    • Lysis of yeast cell walls induced by 2- deoxyglucose at their sites of glucan synthesis
    • Johnson, B. F., 1968 Lysis of yeast cell walls induced by 2- deoxyglucose at their sites of glucan synthesis. J. Bacteriol. 95: 1169–1172.
    • (1968) J. Bacteriol , vol.95 , pp. 1169-1172
    • Johnson, B.F.1
  • 19
    • 0038735287 scopus 로고    scopus 로고
    • Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit
    • Leech, A., N. Nath, R. R. McCartney, and M. C. Schmidt, 2003 Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit. Eukaryot. Cell 2: 265–273.
    • (2003) Eukaryot. Cell , pp. 2-273
    • Leech, A.1    Nath, N.2    McCartney, R.R.3    Schmidt, M.C.4
  • 20
    • 0030874516 scopus 로고    scopus 로고
    • Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: Coupling glucose sensing to gene expression and the cell cycle
    • Li, F. N., and M. Johnston, 1997 Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J. 16: 5629–5638.
    • (1997) EMBO J , vol.16 , pp. 5629-5638
    • Li, F.N.1    Johnston, M.2
  • 21
    • 0035965277 scopus 로고    scopus 로고
    • Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
    • McCartney, R. R., and M. C. Schmidt, 2001 Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276: 36460–3646.
    • (2001) J. Biol. Chem , vol.276 , pp. 36460-43646
    • McCartney, R.R.1    Schmidt, M.C.2
  • 22
    • 0023140958 scopus 로고
    • Mutations causing constitutive invertase synthesis in yeast: Genetic interactions with snf mutations
    • Neigeborn, L., and M. Carlson, 1987 Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115: 247–253.
    • (1987) Genetics , vol.115 , pp. 247-253
    • Neigeborn, L.1    Carlson, M.2
  • 23
    • 56649106338 scopus 로고    scopus 로고
    • Detection of endogenous Snf1 and its activation state: Application to Saccharomyces and Candida species
    • Orlova, M., L. Barrett, and S. Kuchin, 2008 Detection of endogenous Snf1 and its activation state: application to Saccharomyces and Candida species. Yeast 25: 745–754.
    • (2008) Yeast , vol.25 , pp. 745-754
    • Orlova, M.1    Barrett, L.2    Kuchin, S.3
  • 24
    • 78649735310 scopus 로고    scopus 로고
    • Functional domains of yeast hexokinase 2
    • Pelaez, R., P. Herrero, and F. Moreno, 2010 Functional domains of yeast hexokinase 2. Biochem. J. 432: 181–190.
    • (2010) Biochem. J , vol.432 , pp. 181-190
    • Pelaez, R.1    Herrero, P.2    Moreno, F.3
  • 25
    • 33746879141 scopus 로고    scopus 로고
    • Glycolysis inhibition for anticancer treatment
    • Pelicano, H., D. S. Martin, R. H. Xu, and P. Huang, 2006 Glycolysis inhibition for anticancer treatment. Oncogene 25: 4633–4646.
    • (2006) Oncogene , vol.25 , pp. 4633-4646
    • Pelicano, H.1    Martin, D.S.2    Xu, R.H.3    Huang, P.4
  • 26
    • 11844258269 scopus 로고    scopus 로고
    • A role for the nonphosphorylated form of yeast Snf1: Tolerance to toxic cations and activation of potassium transport
    • Portillo, F., J. M. Mulet, and R. Serrano, 2005 A role for the nonphosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Lett. 579: 512–516.
    • (2005) FEBS Lett , vol.579 , pp. 512-516
    • Portillo, F.1    Mulet, J.M.2    Serrano, R.3
  • 27
    • 84874116164 scopus 로고    scopus 로고
    • A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors
    • Raez, L. E., K. Papadopoulos, A. D. Ricart, E.G. Chiorean, R. S. Dipaola et al., 2013 A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 71: 523–530.
    • (2013) Cancer Chemother. Pharmacol , vol.71 , pp. 523-530
    • Raez, L.E.1    Papadopoulos, K.2    Ricart, A.D.3    Chiorean, E.G.4    Dipaola, R.S.5
  • 28
    • 56649095959 scopus 로고    scopus 로고
    • A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth
    • Ralser, M., M. M. Wamelink, E. A. Struys, C. Joppich, S. Krobitsch et al., 2008 A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proc. Natl. Acad. Sci. USA 105: 17807–1781.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 17807-21781
    • Ralser, M.1    Wamelink, M.M.2    Struys, E.A.3    Joppich, C.4    Krobitsch, S.5
  • 29
    • 0029112344 scopus 로고
    • The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast
    • Randez-Gil, F., J. A. Prieto, and P. Sanz, 1995 The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast. Curr. Genet. 28: 101–107.
    • (1995) Curr. Genet , vol.28 , pp. 101-107
    • Randez-Gil, F.1    Prieto, J.A.2    Sanz, P.3
  • 31
    • 0019540802 scopus 로고
    • An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae
    • Schild, D., H. N. Ananthaswamy, and R. K. Mortimer, 1981 An endomitotic effect of a cell cycle mutation of Saccharomyces cerevisiae. Genetics 97: 551–562.
    • (1981) Genetics , vol.97 , pp. 551-562
    • Schild, D.1    Ananthaswamy, H.N.2    Mortimer, R.K.3
  • 32
    • 0034665041 scopus 로고    scopus 로고
    • Beta-subunits of Snf1 kinase are required for kinase function and substrate definition
    • Schmidt, M. C., and R. R. McCartney, 2000 beta-subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J. 19: 4936–4943.
    • (2000) EMBO J , vol.19 , pp. 4936-4943
    • Schmidt, M.C.1    McCartney, R.R.2
  • 33
    • 0026090455 scopus 로고
    • Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes
    • Schuller, H. J., and K. D. Entian, 1991 Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes. J. Bacteriol. 173: 2045–2052.
    • (1991) J. Bacteriol , vol.173 , pp. 2045-2052
    • Schuller, H.J.1    Entian, K.D.2
  • 34
    • 58149092197 scopus 로고    scopus 로고
    • A chemical genomics study identifies Snf1 as a repressor of GCN4 translation
    • Shirra, M. K., R. R. McCartney, C. Zhang, K. M. Shokat, M. C. Schmidt et al., 2008 A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J. Biol. Chem. 283: 35889–35898.
    • (2008) J. Biol. Chem , vol.283 , pp. 35889-35898
    • Shirra, M.K.1    McCartney, R.R.2    Zhang, C.3    Shokat, K.M.4    Schmidt, M.C.5
  • 35
    • 0032768263 scopus 로고    scopus 로고
    • The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1
    • Smith, F. C., S. P. Davies, W. A. Wilson, D. Carling, and D. G. Hardie, 1999 The SNF1 kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory domain 1. FEBS Lett. 453: 219–223.
    • (1999) FEBS Lett , vol.453 , pp. 219-223
    • Smith, F.C.1    Davies, S.P.2    Wilson, W.A.3    Carling, D.4    Hardie, D.G.5
  • 36
    • 0041700137 scopus 로고    scopus 로고
    • Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex
    • Sutherland, C. M., S. A. Hawley, R. R. McCartney, A. Leech, M. J. Stark et al., 2003 Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr. Biol. 13: 1299–1305.
    • (2003) Curr. Biol , vol.13 , pp. 1299-1305
    • Sutherland, C.M.1    Hawley, S.A.2    McCartney, R.R.3    Leech, A.4    Stark, M.J.5
  • 37
    • 77952293012 scopus 로고    scopus 로고
    • PP1 phosphatase-binding motif in Reg1 protein of Saccharomyces cerevisiae is required for interaction with both the PP1 phosphatase Glc7 and the Snf1 protein kinase
    • Tabba, S., S. Mangat, R. Mccartney, and M. C. Schmidt, 2010 PP1 phosphatase-binding motif in Reg1 protein of Saccharomyces cerevisiae is required for interaction with both the PP1 phosphatase Glc7 and the Snf1 protein kinase. Cell. Signal. 22: 1013–1021.
    • (2010) Cell. Signal , vol.22 , pp. 1013-1021
    • Tabba, S.1    Mangat, S.2    McCartney, R.3    Schmidt, M.C.4
  • 38
    • 0028969607 scopus 로고
    • A novel approach for investigating reaction mechanisms in cells. Mechanism of deoxy-trehalose synthesis in Saccharomyces cerevisiae studied by 1H-NMR spectroscopy
    • Tran-Dinh, S., J. Wietzerbin, A. Courtois, and M. Herve, 1995 A novel approach for investigating reaction mechanisms in cells. Mechanism of deoxy-trehalose synthesis in Saccharomyces cerevisiae studied by 1H-NMR spectroscopy. Eur. J. Biochem. 228: 727–731.
    • (1995) Eur. J. Biochem , vol.228 , pp. 727-731
    • Tran-Dinh, S.1    Wietzerbin, J.2    Courtois, A.3    Herve, M.4
  • 39
    • 0031740335 scopus 로고    scopus 로고
    • Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
    • Treitel, M. A., S. Kuchin, and M. Carlson, 1998 Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 6273–6280.
    • (1998) Mol. Cell. Biol , vol.18 , pp. 6273-6280
    • Treitel, M.A.1    Kuchin, S.2    Carlson, M.3
  • 40
    • 0028894928 scopus 로고
    • REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae
    • Tu, J., and M. Carlson, 1995 REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 14: 5939–5946.
    • (1995) EMBO J , vol.14 , pp. 5939-5946
    • Tu, J.1    Carlson, M.2
  • 41
    • 0033529707 scopus 로고    scopus 로고
    • Functional characterization of the S. cerevisiaegenome by gene deletion and parallel analysis
    • Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson et al., 1999 Functional characterization of the S. cerevisiaegenome by gene deletion and parallel analysis. Science 285: 901–906.
    • (1999) Science , vol.285 , pp. 901-906
    • Winzeler, E.A.1    Shoemaker, D.D.2    Astromoff, A.3    Liang, H.4    Anderson, K.5
  • 42
    • 53449102442 scopus 로고    scopus 로고
    • The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation
    • Ye, T., K. Elbing, and S. Hohmann, 2008 The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation. Microbiology 154: 2814–2826.
    • (2008) Microbiology , vol.154 , pp. 2814-2826
    • Ye, T.1    Elbing, K.2    Hohmann, S.3
  • 43
    • 84865218513 scopus 로고    scopus 로고
    • The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae
    • Young, E. T., C. Zhang, K. M. Shokat, P. K. Parua, and K. A. Braun, 2012 The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. J. Biol. Chem. 287: 29021–29034.
    • (2012) J. Biol. Chem , vol.287 , pp. 29021-29034
    • Young, E.T.1    Zhang, C.2    Shokat, K.M.3    Parua, P.K.4    Braun, K.A.5
  • 44
    • 0017408123 scopus 로고
    • Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression
    • Zimmermann, F. K., and I. Scheel, 1977 Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Mol. Gen. Genet. 154: 75–82.
    • (1977) Mol. Gen. Genet , vol.154 , pp. 75-82
    • Zimmermann, F.K.1    Scheel, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.