메뉴 건너뛰기




Volumn 22, Issue 6, 2014, Pages 1373-1386

The bounded capacity of fuzzy neural networks (FNNs) via a new fully connected neural fuzzy inference system (F-CONFIS) with its applications

Author keywords

Capacity of neural networks; fuzzy neural networks (FNNs); fuzzy system; Iris data; neural networks

Indexed keywords


EID: 84907827113     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2013.2292972     Document Type: Article
Times cited : (21)

References (49)
  • 1
    • 79953667064 scopus 로고    scopus 로고
    • A TS-Type maximizingdiscriminability-based recurrent fuzzy network for classification problems
    • Apr
    • G. D. Wu, Z. W. Zhu, and P. H. Huang, "A TS-Type maximizingdiscriminability-based recurrent fuzzy network for classification problems," IEEE Trans. Fuzzy Syst., vol. 19, no. 2, pp. 339-352, Apr. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.2 , pp. 339-352
    • Wu, G.D.1    Zhu, Z.W.2    Huang, P.H.3
  • 2
    • 0029308071 scopus 로고
    • Fuzzy B-spline membership function and its applications in fuzzy-neural control
    • Ma
    • C. H. Wang, W. Y. Wang, T. T. Lee, and P. S. Tseng, "Fuzzy B-spline membership function and its applications in fuzzy-neural control," IEEE Trans. Syst., Man, Cybern., vol. 25, no. 5, pp. 841-851, May 1995.
    • (1995) IEEE Trans. Syst., Man, Cybern. , vol.25 , Issue.5 , pp. 841-851
    • Wang, C.H.1    Wang, W.Y.2    Lee, T.T.3    Tseng, P.S.4
  • 3
    • 60549113059 scopus 로고    scopus 로고
    • From minimum enclosing ball to fast fuzzy inference system training on large datasets
    • Feb
    • F. L. Chung, Z. H. Deng, and S. T.Wang, "From minimum enclosing ball to fast fuzzy inference system training on large datasets," IEEE Trans. Fuzzy Syst., vol. 17, no. 1, pp. 173-184, Feb. 2009.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.1 , pp. 173-184
    • Chung, F.L.1    Deng, Z.H.2    Wang, S.T.3
  • 4
    • 80051493000 scopus 로고    scopus 로고
    • Speedup of implementing fuzzy neural networks with high-dimensional inputs through parallel processing on graphic processing units
    • Aug
    • C. F. Juang, T. C. Chen, and W. Y. Cheng, "Speedup of implementing fuzzy neural networks with high-dimensional inputs through parallel processing on graphic processing units," IEEE Trans. Fuzzy Syst., vol. 19, no. 4, pp. 717-727, Aug. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.4 , pp. 717-727
    • Juang, C.F.1    Chen, T.C.2    Cheng, W.Y.3
  • 5
    • 12944295084 scopus 로고    scopus 로고
    • An on-line ICA-mixture-modelbased fuzzy neural network
    • Jan
    • C. T. Lin, W. C. Cheng, and S. F. Liang, "An on-line ICA-mixture-modelbased fuzzy neural network," IEEE Trans. Fuzzy Syst., vol. 52, no. 1, pp. 207-221, Jan. 2005.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.52 , Issue.1 , pp. 207-221
    • Lin, C.T.1    Cheng, W.C.2    Liang, S.F.3
  • 6
    • 0031075214 scopus 로고    scopus 로고
    • FUZZ: A fuzzy-based concept formation system that integrates human categorization and numerical clustering
    • Feb
    • C. L. P. Chen and Y. Lu, "FUZZ: A fuzzy-based concept formation system that integrates human categorization and numerical clustering," IEEE Trans. Syst., Man, Cybern., B, Cybern., vol. 27, no. 1, pp. 79-94, Feb. 1997.
    • (1997) IEEE Trans. Syst., Man, Cybern., B, Cybern. , vol.27 , Issue.1 , pp. 79-94
    • Chen, C.L.P.1    Lu, Y.2
  • 8
    • 0027666001 scopus 로고
    • An integration of neural network and rulebased systems for design and planning of mechanical assemblies
    • Sep./Oct.
    • C. L. P. Chen and Y.-H. Pao, "An integration of neural network and rulebased systems for design and planning of mechanical assemblies," IEEE Trans. Syst., Man, Cybern., vol. 23, no. 5, pp. 1359-1371, Sep./Oct., 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , Issue.5 , pp. 1359-1371
    • Chen, C.L.P.1    Pao, Y.-H.2
  • 9
    • 0036129249 scopus 로고    scopus 로고
    • Interpretation of artificial neural networks by means of fuzzy rules
    • Jan
    • J. L. Castro, C. J. Mantas, and J. M. Benitez, "Interpretation of artificial neural networks by means of fuzzy rules," IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 101-116, Jan. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.1 , pp. 101-116
    • Castro, J.L.1    Mantas, C.J.2    Benitez, J.M.3
  • 10
    • 3242678956 scopus 로고    scopus 로고
    • Mathematical modeling of observed natural behavior:Afuzzy logic approach
    • E. Tron and M. Margaliot, "Mathematical modeling of observed natural behavior:Afuzzy logic approach," Fuzzy Sets Syst., vol. 146, pp. 437-450, 2004.
    • (2004) Fuzzy Sets Syst. , vol.146 , pp. 437-450
    • Tron, E.1    Margaliot, M.2
  • 11
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-Network-Based fuzzy inference system
    • Ma
    • J. S. R. Jang, "ANFIS: Adaptive-Network-Based fuzzy inference system," IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 12
    • 0033732353 scopus 로고    scopus 로고
    • The equivalence between fuzzy logic systems and feedforward neural networks
    • Mar
    • H. X. Li and C. L. P. Chen, "The equivalence between fuzzy logic systems and feedforward neural networks," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 356-365, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.2 , pp. 356-365
    • Li, H.X.1    Chen, C.L.P.2
  • 13
    • 64549090645 scopus 로고    scopus 로고
    • A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks
    • J. R. Castro, O. Castillo, P. Melin, and A. Rodríguez-Díaz, "A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks," Inform. Sci., vol. 179, no. 13, pp. 2175-2193, 2009.
    • (2009) Inform. Sci. , vol.179 , Issue.13 , pp. 2175-2193
    • Castro, J.R.1    Castillo, O.2    Melin, P.3    Rodríguez-Díaz, A.4
  • 14
    • 0041812022 scopus 로고    scopus 로고
    • Fuzzy systems are universal approximators for a smooth function and its derivatives
    • Jun
    • V. Kreinovich, H. T. Nguyen, and Y. Yam, "Fuzzy systems are universal approximators for a smooth function and its derivatives," Int. J Intell. Syst., vol. 15, no. 6, pp. 565-574, Jun. 2000.
    • (2000) Int. J Intell. Syst. , vol.15 , Issue.6 , pp. 565-574
    • Kreinovich, V.1    Nguyen, H.T.2    Yam, Y.3
  • 15
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least squares learning
    • Sep
    • L. X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least squares learning," IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 807-814, Sep. 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.5 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 16
    • 0042879960 scopus 로고    scopus 로고
    • Approximation properties of fuzzy systems for smooth functions and their first-order derivative
    • Mar.
    • R. Hassine, F. Karray, A. M. Alimi, and M. Selmi, "Approximation properties of fuzzy systems for smooth functions and their first-order derivative," IEEE Trans. Syst., Man, Cybern., A, Syst., Humans, vol. 33, no. 2, pp. 160-168, Mar., 2003.
    • (2003) IEEE Trans. Syst., Man, Cybern., A, Syst., Humans , vol.33 , Issue.2 , pp. 160-168
    • Hassine, R.1    Karray, F.2    Alimi, A.M.3    Selmi, M.4
  • 17
    • 51749113577 scopus 로고    scopus 로고
    • Upper bound on pattern storage in feedforward networks
    • Orlando, FL, USA, Aug.
    • P. L. Narasimha, M. T. Manry, and F.Maldonado, "Upper bound on pattern storage in feedforward networks," in Proc. Int. Joint Conf. Neural Netw., Orlando, FL, USA, Aug. 2007, pp. 1714-1719.
    • (2007) Proc. Int. Joint Conf. Neural Netw. , pp. 1714-1719
    • Narasimha, P.L.1    Manry, M.T.2    Maldonado, F.3
  • 18
    • 0023383370 scopus 로고
    • The capacity of the hopfield associative memory
    • Jul.
    • R. J. Mceliece, "The capacity of the hopfield associative memory," IEEE Trans. Inform. Theory, vol. IT-33, no. 4, pp. 461-482, Jul., 1987.
    • (1987) IEEE Trans. Inform. Theory , vol.IT-33 , Issue.4 , pp. 461-482
    • McEliece, R.J.1
  • 19
    • 34250834513 scopus 로고
    • Information capacity of associative memories
    • Jan
    • A. Kuh and B. W. Dickson, "Information capacity of associative memories," IEEE Trans. Inform. Theory, vol. 35, no. 1, pp. 59-68, Jan. 1989.
    • (1989) IEEE Trans. Inform. Theory , vol.35 , Issue.1 , pp. 59-68
    • Kuh, A.1    Dickson, B.W.2
  • 20
    • 0013995259 scopus 로고
    • Capacity problems for linear machines
    • L. Kanal, Ed. Oklahoma City, OK, USA: Thompson
    • T. M. Cover, "Capacity problems for linear machines," in Pattern Recognition, L. Kanal, Ed. Oklahoma City, OK, USA: Thompson, 1968, pp. 283-289.
    • (1968) Pattern Recognition , pp. 283-289
    • Cover, T.M.1
  • 21
    • 0026275683 scopus 로고
    • Capabilities of a three-layer feedforward neural network
    • Nov
    • S. Tamura, "Capabilities of a three-layer feedforward neural network," in Proc. Int. Joint Conf. Neural Netw., Nov. 1991, pp. 2757-2762.
    • (1991) Proc. Int. Joint Conf. Neural Netw. , pp. 2757-2762
    • Tamura, S.1
  • 22
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons in multilayer perceptrons
    • Jan
    • S. C. Huang and Y Huang, "Bounds on the number of hidden neurons in multilayer perceptrons," IEEE Trans. Neural Netw., vol. 2, no. 1, pp. 47-55, Jan. 1991.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.1 , pp. 47-55
    • Huang, S.C.1    Huang, Y.2
  • 23
    • 0026190194 scopus 로고
    • A simple method to derive bounds on the size and to train multilayer neural networks
    • Jul
    • M. A. Sartori and P. J. Antsaklis, "A simple method to derive bounds on the size and to train multilayer neural networks," IEEE Tran. Neural Netw., vol. 2, no. 4, pp. 467-471, Jul. 1991.
    • (1991) IEEE Tran. Neural Netw. , vol.2 , Issue.4 , pp. 467-471
    • Sartori, M.A.1    Antsaklis, P.J.2
  • 24
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation function
    • Jan
    • G. B. Huang and H. A. Babri, "Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation function," IEEE Trans. Neural Netw., vol. 9, no. 1, pp. 224-229, Jan. 1998.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.A.2
  • 25
    • 80053056934 scopus 로고    scopus 로고
    • Finding the capacity of Fuzzy Neural Networks (FNNs) via its equivalent fully connected neural networks (FFNNs)
    • J. Wang, C. H. Wang, and C. L. P. Chen, "Finding the capacity of Fuzzy Neural Networks (FNNs) via its equivalent fully connected neural networks (FFNNs)," in Proc. IEEE Int. Conf. Fuzzy Syst., 2011, pp. 2193-2198.
    • (2011) Proc. IEEE Int. Conf. Fuzzy Syst. , pp. 2193-2198
    • Wang, J.1    Wang, C.H.2    Chen, C.L.P.3
  • 26
    • 83755207447 scopus 로고    scopus 로고
    • On the BP training algorithm of Fuzzy Neural Networks (FNNs) via its equivalent fully connected neural networks(FFNNs)
    • Oct.
    • J.Wang, C. H.Wang, and C. L. P. Chen, "On the BP training algorithm of Fuzzy Neural Networks (FNNs) via its equivalent fully connected neural networks(FFNNs)," in Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 2011, pp. 1376-1381.
    • (2011) Proc. IEEE Int. Conf. Syst., Man, Cybern. , pp. 1376-1381
    • Wang, J.1    Wang, C.H.2    Chen, C.L.P.3
  • 27
    • 33144459783 scopus 로고    scopus 로고
    • Support-vector-based fuzzy neural network for pattern classification
    • Feb
    • C. T. Lin, C. M. Yeh, S. F. Liang, and J. F. Chung, "Support-vector-based fuzzy neural network for pattern classification," IEEE Trans. Fuzzy Syst., vol. 14, no. 1, pp. 31-41, Feb. 2006.
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , Issue.1 , pp. 31-41
    • Lin, C.T.1    Yeh, C.M.2    Liang, S.F.3    Chung, J.F.4
  • 28
    • 42549104888 scopus 로고    scopus 로고
    • DCT-Yager FNN: A novel yager-based fuzzy neural network with the discrete clustering technique
    • Apr
    • A. Singh, C. Quek, and S. Y. Cho, "DCT-Yager FNN: A novel yager-based fuzzy neural network with the discrete clustering technique," IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 625-644, Apr. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.4 , pp. 625-644
    • Singh, A.1    Quek, C.2    Cho, S.Y.3
  • 29
    • 75549090905 scopus 로고    scopus 로고
    • R-POPTVR: A novel reinforcement-based POPTVR fuzzy neural network for pattern classification
    • Nov
    • W. C. Wong, S. Y. Cho, and C. Quek, "R-POPTVR: A novel reinforcement-based POPTVR fuzzy neural network for pattern classification," IEEE Trans. Neural Netw., vol. 20, no. 11, pp. 31-41, Nov. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.11 , pp. 31-41
    • Wong, W.C.1    Cho, S.Y.2    Quek, C.3
  • 30
    • 0035272310 scopus 로고    scopus 로고
    • Generalization ability of folding networks
    • Mar./Apr
    • B. Hammer, "Generalization ability of folding networks," IEEE Trans. Knowledge Data Eng., vol. 13, no. 2, pp. 196-206, Mar./Apr. 2001.
    • (2001) IEEE Trans. Knowledge Data Eng. , vol.13 , Issue.2 , pp. 196-206
    • Hammer, B.1
  • 31
    • 0016368711 scopus 로고
    • Application of fuzzy algorithms for control of simple dynamic plant
    • E. H. Mamdani, "Application of fuzzy algorithms for control of simple dynamic plant," Proc. Inst. Elect. Eng., vol. 121, no. 12, pp. 1585-1588, 1976.
    • (1976) Proc. Inst. Elect. Eng. , vol.121 , Issue.12 , pp. 1585-1588
    • Mamdani, E.H.1
  • 32
    • 79953646805 scopus 로고    scopus 로고
    • Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation
    • Apr
    • Z. H. Deng, K. S. Choi, F. L. Chung, and S. T. Wang, "Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation," IEEE Trans. Fuzzy Syst., vol. 19, no. 2, pp. 210-226, Apr. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.2 , pp. 210-226
    • Deng, Z.H.1    Choi, K.S.2    Chung, F.L.3    Wang, S.T.4
  • 33
    • 84859724131 scopus 로고    scopus 로고
    • A fuzzy system constructed by rule generation and iterative linear SVR for antecedent and consequent parameter optimization
    • Apr
    • C. F. Juang and C. D. Hsieh, "A fuzzy system constructed by rule generation and iterative linear SVR for antecedent and consequent parameter optimization," IEEE Trans. Fuzzy Syst., vol. 20, no. 2, pp. 372-384, Apr. 2012.
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.2 , pp. 372-384
    • Juang, C.F.1    Hsieh, C.D.2
  • 34
    • 79953667359 scopus 로고    scopus 로고
    • Evolutionary group-based particle swarmoptimized fuzzy controller with application to mobile robot navigation in unknown environments
    • Apr
    • C. F. Juang and Y. C. Chang, "Evolutionary group-based particle swarmoptimized fuzzy controller with application to mobile robot navigation in unknown environments," IEEE Trans. Fuzzy Syst., vol. 19, no. 2, pp. 379-392, Apr. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.2 , pp. 379-392
    • Juang, C.F.1    Chang, Y.C.2
  • 35
    • 0036456215 scopus 로고    scopus 로고
    • Backpropagation based training algorithm for Takagi-Sugeno type MIMO neuro-fuzzy network to forecast electrical load time series
    • A. K. Palit and G. Doeding, "Backpropagation based training algorithm for Takagi-Sugeno type MIMO neuro-fuzzy network to forecast electrical load time series," in Proc. IEEE Int. Conf. Fuzzy Syst., 2002, vol. 1, pp. 86-91.
    • (2002) Proc. IEEE Int. Conf. Fuzzy Syst. , vol.1 , pp. 86-91
    • Palit, A.K.1    Doeding, G.2
  • 36
    • 0038200882 scopus 로고    scopus 로고
    • Fuzzy adaptive sliding-mode control for MIMO nonlinear systems
    • Jun.
    • S. Tong and H. X. Li, "Fuzzy adaptive sliding-mode control for MIMO nonlinear systems," IEEE Trans. Fuzzy Syst., vol. 11, no. 3, pp. 354-360, Jun., 2003.
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , Issue.3 , pp. 354-360
    • Tong, S.1    Li, H.X.2
  • 37
    • 78951480300 scopus 로고    scopus 로고
    • Robust adaptive fuzzy output feedback control system for robot manipulators
    • Apr
    • S. Islam and P. X. Liu, "Robust adaptive fuzzy output feedback control system for robot manipulators," IEEE Trans. Fuzzy Syst., vol. 16, no. 2, pp. 288-296, Apr. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.2 , pp. 288-296
    • Islam, S.1    Liu, P.X.2
  • 38
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm
    • Sep
    • S. Horikawa, T. Furuhashi, and Y. Uchikawa, "On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm," IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 801-806, Sep. 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.5 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchikawa, Y.3
  • 39
    • 0031907489 scopus 로고    scopus 로고
    • An incremental adaptive implementation of functional-link processing for function approximation, time-series prediction, and system identification
    • Jan
    • C. L. P. Chen, S. R. LeClair, and Y. H. Pao, "An incremental adaptive implementation of functional-link processing for function approximation, time-series prediction, and system identification," Neurocomput., vol. 18, no. 1-3, pp. 11-31, Jan. 1998.
    • (1998) Neurocomput. , vol.18 , Issue.1-3 , pp. 11-31
    • Chen, C.L.P.1    Leclair, S.R.2    Pao, Y.H.3
  • 40
    • 72949089051 scopus 로고    scopus 로고
    • Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters
    • Jan.
    • Y. J. Liu, W. Wang, S. C. Tong, and Y. S. Liu, "Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters," IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 40, no. 1, pp. 170-184, Jan., 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. A, Syst., Humans , vol.40 , Issue.1 , pp. 170-184
    • Liu, Y.J.1    Wang, W.2    Tong, S.C.3    Liu, Y.S.4
  • 41
    • 0034875840 scopus 로고    scopus 로고
    • Training neural networks: Backpropagation vs. Genetic algorithms
    • M. N. H. Siddique and M. O. Tokhi, "Training neural networks: Backpropagation vs. genetic algorithms," in Proc. Int. Joint Conf. Neural Netw., 2001, vol. 4, pp. 2673-2678.
    • (2001) Proc. Int. Joint Conf. Neural Netw. , vol.4 , pp. 2673-2678
    • Siddique, M.N.H.1    Tokhi, M.O.2
  • 42
    • 0035359807 scopus 로고    scopus 로고
    • Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm
    • Jun
    • C. H.Wang, H. L. Liu, and C. T. Lin, "Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 31, no. 3, pp. 467-475, Jun. 2001.
    • (2001) IEEE Trans. Syst. Man Cybern. B, Cybern. , vol.31 , Issue.3 , pp. 467-475
    • Wang, C.H.1    Liu, H.L.2    Lin, C.T.3
  • 43
    • 46849120765 scopus 로고    scopus 로고
    • On the equivalence of a table lookup (TL) technique and fuzzy neural network (FNN) with block pulse membership functions (BPMFs) and its application to water injection control of an automobile
    • Jul
    • C. H. Wang and J. S. Wen, "On the equivalence of a table lookup (TL) technique and fuzzy neural network (FNN) with block pulse membership functions (BPMFs) and its application to water injection control of an automobile," IEEE Trans Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 4, pp. 574-580, Jul. 2008.
    • (2008) IEEE Trans Syst., Man, Cybern. C, Appl. Rev. , vol.38 , Issue.4 , pp. 574-580
    • Wang, C.H.1    Wen, J.S.2
  • 45
    • 80051494413 scopus 로고    scopus 로고
    • SRobust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems
    • Aug
    • C. S. Chen, "SRobust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems," IEEE Trans. Fuzzy Syst., vol. 19, no. 4, pp. 694-706, Aug. 2011.
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.4 , pp. 694-706
    • Chen, C.S.1
  • 46
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Sep
    • V. N. Vapnik, "An overview of statistical learning theory," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 988-999, Sep. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 47
    • 17644395959 scopus 로고    scopus 로고
    • TSK-fuzzy modeling based on insensitive learning
    • Apr
    • J. M. Leski, "TSK-fuzzy modeling based on insensitive learning," IEEE Trans. Fuzzy Syst., vol. 13, no. 2, pp. 181-193, Apr. 2005.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.2 , pp. 181-193
    • Leski, J.M.1
  • 48
    • 0005192714 scopus 로고
    • Occam's razor
    • W. M. Thorburn, "Occam's razor," Mind, vol. 24, pp. 287-288, 1915.
    • (1915) Mind , vol.24 , pp. 287-288
    • Thorburn, W.M.1
  • 49
    • 35348845206 scopus 로고    scopus 로고
    • A generalized fuzzy clustering regularizationmodel with optimality tests and model complexity analysis
    • Oct
    • J.Yu andM. S.Yang, "A generalized fuzzy clustering regularizationmodel with optimality tests and model complexity analysis," IEEE Trans. Fuzzy Syst., vol. 15, no. 5, pp. 904-915, Oct. 2007.
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.5 , pp. 904-915
    • Yu, J.1    Yang, M.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.