메뉴 건너뛰기




Volumn 78, Issue , 2015, Pages 141-154

A prognostics approach to nuclear component degradation modeling based on Gaussian Process Regression

Author keywords

Bayesian inference; Creep; Filter clogging; Gaussian process regression; Prognostics; Remaining useful life

Indexed keywords

BAYESIAN NETWORKS; BOILING WATER REACTORS; CREEP; GAUSSIAN NOISE (ELECTRONIC); INFERENCE ENGINES; NUCLEAR FUELS; NUCLEAR POWER PLANTS; OUTAGES; SEAWATER; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; WATER FILTRATION;

EID: 84907783894     PISSN: 01491970     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.pnucene.2014.08.006     Document Type: Article
Times cited : (47)

References (35)
  • 1
    • 84872343379 scopus 로고    scopus 로고
    • Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data
    • P. Baraldi, F. Mangili, and E. Zio Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data Reliab. Eng. Syst. Saf. 112C 2013 94 108
    • (2013) Reliab. Eng. Syst. Saf. , vol.112 C , pp. 94-108
    • Baraldi, P.1    Mangili, F.2    Zio, E.3
  • 2
    • 84874705806 scopus 로고    scopus 로고
    • Model-based and data-driven prognostics under different available information
    • P. Baraldi, F. Cadini, F. Mangili, and E. Zio Model-based and data-driven prognostics under different available information Probabilist. Eng. Mech. 32 2013 66 79
    • (2013) Probabilist. Eng. Mech. , vol.32 , pp. 66-79
    • Baraldi, P.1    Cadini, F.2    Mangili, F.3    Zio, E.4
  • 4
    • 0029357132 scopus 로고
    • Development of an on-line fuzzy expert system for integrated alarm processing in nuclear power plants
    • S.S. Choi, K.S. Kang, H.G. Kim, and S.H. Chang Development of an on-line fuzzy expert system for integrated alarm processing in nuclear power plants IEEE Trans. Nucl. Sci. 42 4 1995 1406 1418
    • (1995) IEEE Trans. Nucl. Sci. , vol.42 , Issue.4 , pp. 1406-1418
    • Choi, S.S.1    Kang, K.S.2    Kim, H.G.3    Chang, S.H.4
  • 7
    • 58449098052 scopus 로고    scopus 로고
    • Current computational trends in equipment prognostics
    • J.W. Hines, and A. Usynin Current computational trends in equipment prognostics Int. J. Comput. Intell. Syst. 1 1 2008 94 102
    • (2008) Int. J. Comput. Intell. Syst. , vol.1 , Issue.1 , pp. 94-102
    • Hines, J.W.1    Usynin, A.2
  • 8
    • 22444441604 scopus 로고    scopus 로고
    • An inspection-maintenance model for systems with multiple competing processes
    • W. Li, and H. Pham An inspection-maintenance model for systems with multiple competing processes IEEE Trans. Reliab. 54 2 2005 318 327
    • (2005) IEEE Trans. Reliab. , vol.54 , Issue.2 , pp. 318-327
    • Li, W.1    Pham, H.2
  • 9
    • 84859897165 scopus 로고    scopus 로고
    • Fault diagnosis of helical coil steam generator systems of an integral pressurized water reactor using optimal sensor selection
    • F. Li, B.R. Upadhyaya, and S.R.P. Perillo Fault diagnosis of helical coil steam generator systems of an integral pressurized water reactor using optimal sensor selection IEEE Trans. Nucl. Sci. 59 2 2012 403 410
    • (2012) IEEE Trans. Nucl. Sci. , vol.59 , Issue.2 , pp. 403-410
    • Li, F.1    Upadhyaya, B.R.2    Perillo, S.R.P.3
  • 11
    • 79751524232 scopus 로고    scopus 로고
    • Applications of fault detection and diagnosis methods in nuclear power plants: A review
    • J. Ma, and J. Jiang Applications of fault detection and diagnosis methods in nuclear power plants: a review Prog. Nucl. Energy 53 3 2011 255 266
    • (2011) Prog. Nucl. Energy , vol.53 , Issue.3 , pp. 255-266
    • Ma, J.1    Jiang, J.2
  • 12
    • 0003319647 scopus 로고    scopus 로고
    • Introduction to Gaussian processes
    • C.M. Bishop, NATO ASI Series Springer Berlin
    • D.J.C. MacKay Introduction to Gaussian processes C.M. Bishop, Neural Networks and Machine Learning NATO ASI Series vol. 168 1998 Springer Berlin 133 165
    • (1998) Neural Networks and Machine Learning , vol.168 , pp. 133-165
    • Mackay, D.J.C.1
  • 14
    • 0038416709 scopus 로고    scopus 로고
    • Fuzzy logic for signal prediction in nuclear systems
    • 1-4 SPEC
    • M. Marseguerra, E. Zio, P. Baraldi, and A. Oldrini Fuzzy logic for signal prediction in nuclear systems Prog. Nucl. Energy 43 1-4 SPEC 2003 373 380
    • (2003) Prog. Nucl. Energy , vol.43 , pp. 373-380
    • Marseguerra, M.1    Zio, E.2    Baraldi, P.3    Oldrini, A.4
  • 15
    • 29144518434 scopus 로고    scopus 로고
    • Simulation of the time-dependent breakdown characteristics of heavy-ion irradiated gate oxides using a mean-reverting Poisson-Gaussian process
    • E. Miranda, A. Cester, J. Suñé, A. Paccagnella, and G. Ghidini Simulation of the time-dependent breakdown characteristics of heavy-ion irradiated gate oxides using a mean-reverting Poisson-Gaussian process IEEE Trans. Nucl. Sci. 52 5 2005 1462 1467
    • (2005) IEEE Trans. Nucl. Sci. , vol.52 , Issue.5 , pp. 1462-1467
    • Miranda, E.1    Cester, A.2    Suñé, J.3    Paccagnella, A.4    Ghidini, G.5
  • 16
    • 79957919495 scopus 로고    scopus 로고
    • Bayesian statistic based multivariate Gaussian process approach for offline/online fatigue crack growth prediction
    • S. Mohanty, A. Chattopadhyay, P. Peralta, and S. Das Bayesian statistic based multivariate Gaussian process approach for offline/online fatigue crack growth prediction Exp. Mech. 51 2011 833 843
    • (2011) Exp. Mech. , vol.51 , pp. 833-843
    • Mohanty, S.1    Chattopadhyay, A.2    Peralta, P.3    Das, S.4
  • 17
    • 84877325526 scopus 로고    scopus 로고
    • Transient identification in nuclear power plants: A review
    • K. Moshkbar-Bakhshayesh, and M.B. Ghofrani Transient identification in nuclear power plants: a review Prog. Nucl. Energy 67 2013 23 32
    • (2013) Prog. Nucl. Energy , vol.67 , pp. 23-32
    • Moshkbar-Bakhshayesh, K.1    Ghofrani, M.B.2
  • 18
    • 34848903894 scopus 로고    scopus 로고
    • Formalization of a new prognosis model for supporting proactive maintenance implementation on industrial system
    • A. Muller, M. Sunher, and B. Iung Formalization of a new prognosis model for supporting proactive maintenance implementation on industrial system Reliab. Eng. Syst. Saf. 93 2008 234 253
    • (2008) Reliab. Eng. Syst. Saf. , vol.93 , pp. 234-253
    • Muller, A.1    Sunher, M.2    Iung, B.3
  • 19
    • 13844267513 scopus 로고    scopus 로고
    • Creep constitutive equations for a 0.5Cr 0.5 Mo 0.25V ferritic steel in the temperature range 565 8C-675 8C
    • R. Mustata, and D.R. Hayhurst Creep constitutive equations for a 0.5Cr 0.5 Mo 0.25V ferritic steel in the temperature range 565 8C-675 8C Int. J. Press. Vessels Pip. 82 2005 363 372
    • (2005) Int. J. Press. Vessels Pip. , vol.82 , pp. 363-372
    • Mustata, R.1    Hayhurst, D.R.2
  • 23
    • 84867668366 scopus 로고    scopus 로고
    • Dynamic weighting ensembles for incremental learning and diagnosing new concept class faults in nuclear power systems
    • R. Razavi-Far, P. Baraldi, and E. Zio Dynamic weighting ensembles for incremental learning and diagnosing new concept class faults in nuclear power systems IEEE Trans. Nucl. Sci. 59 5 2012 2520 2530
    • (2012) IEEE Trans. Nucl. Sci. , vol.59 , Issue.5 , pp. 2520-2530
    • Razavi-Far, R.1    Baraldi, P.2    Zio, E.3
  • 24
    • 57649214105 scopus 로고    scopus 로고
    • Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks
    • T.V. Santosh, A. Srivastava, V.V.S. Sanyasi Rao, A.K. Gosh, and H.S. Kushwaha Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks Reliab. Eng. Syst. Saf. 94 2009 759 762
    • (2009) Reliab. Eng. Syst. Saf. , vol.94 , pp. 759-762
    • Santosh, T.V.1    Srivastava, A.2    Sanyasi Rao, V.V.S.3    Gosh, A.K.4    Kushwaha, H.S.5
  • 25
    • 15244348898 scopus 로고    scopus 로고
    • Hierarchical Gaussian process mixtures for regression
    • J.Q. Shi, R. Murray-Smith, and D.M. Titterington Hierarchical Gaussian process mixtures for regression Stat. Comput. 15 2005 31 41
    • (2005) Stat. Comput. , vol.15 , pp. 31-41
    • Shi, J.Q.1    Murray-Smith, R.2    Titterington, D.M.3
  • 26
    • 33646135340 scopus 로고    scopus 로고
    • Experimental study of clogging with monodisperse PSL particles
    • C.B. Song, H.S. Park, and K.W. Lee Experimental study of clogging with monodisperse PSL particles Power Technol. 163 2006 152 159
    • (2006) Power Technol. , vol.163 , pp. 152-159
    • Song, C.B.1    Park, H.S.2    Lee, K.W.3
  • 28
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M.E. Tipping Sparse Bayesian learning and the relevance vector machine J. Mach. Learn. Res. 1 2001 211 244
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 31
    • 34547237743 scopus 로고    scopus 로고
    • Reliability and degradation modeling with random or uncertain failure threshold
    • IEEE Conference Publications
    • P. Wang, and D.W. Coit Reliability and degradation modeling with random or uncertain failure threshold Proc. of the Annual Reliability and Maintainability Symposium 2008 IEEE Conference Publications 334 340
    • (2008) Proc. of the Annual Reliability and Maintainability Symposium , pp. 334-340
    • Wang, P.1    Coit, D.W.2
  • 33
    • 23344432762 scopus 로고    scopus 로고
    • Evolutionary fuzzy clustering for the classification of transients in nuclear components
    • E. Zio, and P. Baraldi Evolutionary fuzzy clustering for the classification of transients in nuclear components Prog. Nucl. Energy 46 3-4 2005 282 296
    • (2005) Prog. Nucl. Energy , vol.46 , Issue.34 , pp. 282-296
    • Zio, E.1    Baraldi, P.2
  • 34
    • 70349470960 scopus 로고    scopus 로고
    • A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system
    • E. Zio, and F. Di Maio A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system Reliab. Eng. Syst. Saf. 95 1 2010 49 57
    • (2010) Reliab. Eng. Syst. Saf. , vol.95 , Issue.1 , pp. 49-57
    • Zio, E.1    Di Maio, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.