메뉴 건너뛰기




Volumn 2, Issue , 2009, Pages 589-600

Mining cohesive patterns from graphs with feature vectors

Author keywords

[No Author keywords available]

Indexed keywords

DATA TYPE; EXPERIMENTAL EVALUATION; FEATURE SUBSPACE; FEATURE VECTORS; FUNCTIONAL MODULES; GRAPH DATA; KNOWLEDGE DISCOVERY; NETWORK DATA; PROBLEM DEFINITION; PROTEIN-PROTEIN INTERACTION NETWORKS; PRUNING STRATEGY; RELATIONSHIPS BETWEEN ENTITIES; SIMULTANEOUS USE; SMALL COMMUNITY; SOCIAL NETWORKS; SUBGRAPHS; SUBSPACE CLUSTERS;

EID: 72749099065     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (64)

References (24)
  • 1
    • 72749125792 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In Proc. of COMAD, 1993.
    • (1993) Proc. of COMAD
    • Agrawal, R.1    Imielinski, T.2    Swami, A.N.3
  • 2
    • 26944496051 scopus 로고    scopus 로고
    • Pushing tougher constraints in frequent pattern mining
    • F. Bonchi and C. Lucchese. Pushing tougher constraints in frequent pattern mining. In Proc. of PAKDD, 2005.
    • (2005) Proc. of PAKDD
    • Bonchi, F.1    Lucchese, C.2
  • 3
    • 51849123741 scopus 로고    scopus 로고
    • Joint cluster analysis of attribute data and relationship data: The connected k-center problem
    • M. Ester, R. Ge, B. J. Gao, Z. Hu, and B. Ben-Moshe. Joint cluster analysis of attribute data and relationship data: the connected k-center problem. In Proc. of SDM, 2006.
    • (2006) Proc. of SDM
    • Ester, M.1    Ge, R.2    Gao, B.J.3    Hu, Z.4    Ben-Moshe, B.5
  • 6
    • 33745630997 scopus 로고    scopus 로고
    • Discovering large dense subgraphs in massive graphs
    • D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive graphs. In Proc. of VLDB, 2005.
    • (2005) Proc. of VLDB
    • Gibson, D.1    Kumar, R.2    Tomkins, A.3
  • 7
    • 0035445792 scopus 로고    scopus 로고
    • A relationship between gene expression and protein interactions on the proteome scale: Analysis of the bacteriophage t7 and the yeast saccharomyces cerevisiae
    • A. Grioriev et al. A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage t7 and the yeast saccharomyces cerevisiae. Nucleic Acids Research, 2001.
    • (2001) Nucleic Acids Research
    • Grioriev, A.1
  • 9
    • 29144474447 scopus 로고    scopus 로고
    • Mining coherent dense subgraphs across massive biological networks for functional discovery
    • H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics, 2005.
    • (2005) Bioinformatics
    • Hu, H.1    Yan, X.2    Huang, Y.3    Han, J.4    Zhou, X.J.5
  • 10
    • 0034616930 scopus 로고    scopus 로고
    • Functional discovery via a compendium of expression profiles
    • July
    • T. Hughes et al. Functional discovery via a compendium of expression profiles. Cell, July 2000.
    • (2000) Cell
    • Hughes, T.1
  • 13
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. In Physical Review, 2004.
    • (2004) Physical Review
    • Newman, M.E.J.1    Girvan, M.2
  • 15
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. In Proc. of IEEE TPAMI, 2000.
    • (2000) Proc. of IEEE TPAMI
    • Shi, J.1    Malik, J.2
  • 16
    • 36849029834 scopus 로고    scopus 로고
    • A spectral clustering approach to optimally combining numberical vectors with a modular network
    • M. Shiga, I. Takigawa, and K. Mamitsuka. A spectral clustering approach to optimally combining numberical vectors with a modular network. In Proc. of ACM SIGKDD, 2007.
    • (2007) Proc. of ACM SIGKDD
    • Shiga, M.1    Takigawa, I.2    Mamitsuka, K.3
  • 17
    • 26844498200 scopus 로고    scopus 로고
    • A dna microarray survey of gene expression in normal human tissues
    • R. Shyamsundar et al. A dna microarray survey of gene expression in normal human tissues. Genome Biology, 2005.
    • (2005) Genome Biology
    • Shyamsundar, R.1
  • 19
    • 1942418618 scopus 로고    scopus 로고
    • Discriminative probabilistic models for relational data
    • B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational data. In Proc. of UAT, 2002.
    • (2002) Proc. of UAT
    • Taskar, B.1    Abbeel, P.2    Koller, D.3
  • 20
    • 72749113516 scopus 로고    scopus 로고
    • Identification of functional modules using network topology and high-throughput data
    • I. Ulitsky and R. Shamir. Identification of functional modules using network topology and high-throughput data. BMC Systems Biology, (8), 2005.
    • (2005) BMC Systems Biology , vol.8
    • Ulitsky, I.1    Shamir, R.2
  • 21
    • 33749600907 scopus 로고    scopus 로고
    • Clan: An algorithm for mining closed cliques from large dense graph databases
    • J. Wang, Z. Zeng, and L. Zhou. Clan: An algorithm for mining closed cliques from large dense graph databases. In Proc. of ICDE, 2006.
    • (2006) Proc. of ICDE
    • Wang, J.1    Zeng, Z.2    Zhou, L.3
  • 23
    • 32344434822 scopus 로고    scopus 로고
    • Mining closed relational graphs with connectivity constraints
    • X. Yan, X. J. Zhou, and J. Han. Mining closed relational graphs with connectivity constraints. In Proc. of ACM SIGKDD, 2005.
    • (2005) Proc. of ACM SIGKDD
    • Yan, X.1    Zhou, X.J.2    Han, J.3
  • 24
    • 33749560883 scopus 로고    scopus 로고
    • Coherent closed quasi-clique discovery from large dense graph databases
    • Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent closed quasi-clique discovery from large dense graph databases. In Proc. of ACM SIGKDD, 2006.
    • (2006) Proc. of ACM SIGKDD
    • Zeng, Z.1    Wang, J.2    Zhou, L.3    Karypis, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.