-
1
-
-
0026970695
-
Nonintrusive appliance load monitoring
-
doi:10.1109/5.192069
-
G. W. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12):1870-1891, 1992. doi:10.1109/5.192069.
-
(1992)
Proceedings of the IEEE
, vol.80
, Issue.12
, pp. 1870-1891
-
-
Hart, G.W.1
-
5
-
-
84859083031
-
REDD: A public data set for energy disaggregation research
-
J. Z. Kolter and M. J. Johnson. REDD: A public data set for energy disaggregation research. In Proceedings of 1st KDD Workshop on Data Mining Applications in Sustainability, San Diego, CA, USA, 2011.
-
Proceedings of 1st KDD Workshop on Data Mining Applications in Sustainability, San Diego, CA, USA, 2011
-
-
Kolter, J.Z.1
Johnson, M.J.2
-
6
-
-
84893535305
-
BLUED: A fully labeled public dataset for Event-Based Non-Intrusive load monitoring research
-
Beijing, China
-
K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Bergés. BLUED: A fully labeled public dataset for Event-Based Non-Intrusive load monitoring research. In Proceedings of 2nd KDD Workshop on Data Mining Applications in Sustainability, pages 12-16, Beijing, China, 2012.
-
(2012)
Proceedings of 2nd KDD Workshop on Data Mining Applications in Sustainability
, pp. 12-16
-
-
Anderson, K.1
Ocneanu, A.2
Benitez, D.3
Carlson, D.4
Rowe, A.5
Bergés, M.6
-
7
-
-
84906701731
-
Smart*: An open data set and tools for enabling research in sustainable homes
-
S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht. Smart*: An open data set and tools for enabling research in sustainable homes. In Proceedings of 2nd KDD Workshop on Data Mining Applications in Sustainability, Beijing, China, 2012.
-
Proceedings of 2nd KDD Workshop on Data Mining Applications in Sustainability, Beijing, China, 2012
-
-
Barker, S.1
Mishra, A.2
Irwin, D.3
Cecchet, E.4
Shenoy, P.5
Albrecht, J.6
-
8
-
-
14844283547
-
PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
-
doi:10.1161/01.cir.101.23.e215
-
A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23):e215-e220, 2000. doi:10.1161/01.cir.101.23.e215.
-
(2000)
Circulation
, vol.101
, Issue.23
-
-
Goldberger, A.L.1
Amaral, L.A.2
Glass, L.3
Hausdorff, J.M.4
Ivanov, P.C.5
Mark, R.G.6
Mietus, J.E.7
Moody, G.B.8
Peng, C.-K.9
Stanley, H.E.10
-
9
-
-
30344486245
-
Crawdad: A community resource for archiving wireless data at dartmouth
-
doi:10.1109/MPRV.2005.75
-
D. Kotz and T. Henderson. Crawdad: A community resource for archiving wireless data at dartmouth. Pervasive Computing, IEEE, 4(4):12-14, 2005. doi:10.1109/MPRV.2005.75.
-
(2005)
Pervasive Computing, IEEE
, vol.4
, Issue.4
, pp. 12-14
-
-
Kotz, D.1
Henderson, T.2
-
10
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
arXiv:1201.0490
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011. arXiv:1201.0490.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
11
-
-
84880115596
-
Unsupervised Disaggregation of Low Frequency Power Measurements
-
Mesa, AZ, USA, doi:10.1137/1.9781611972818.64
-
H. Kim, M. Marwah, M. F. Arlitt, G. Lyon, and J. Han. Unsupervised Disaggregation of Low Frequency Power Measurements. In Proceedings of 11th SIAM International Conference on Data Mining, pages 747-758, Mesa, AZ, USA, 2011. doi:10.1137/1.9781611972818.64.
-
(2011)
Proceedings of 11th SIAM International Conference on Data Mining
, pp. 747-758
-
-
Kim, H.1
Marwah, M.2
Arlitt, M.F.3
Lyon, G.4
Han, J.5
-
12
-
-
84870720747
-
Is disaggregation the holy grail of energy efficiency? The case of electricity
-
doi:10.1016/j.enpol.2012.08.062
-
K. C. Armel, A. Gupta, G. Shrimali, and A. Albert. Is disaggregation the holy grail of energy efficiency? The case of electricity. Energy Policy, 52:213-234, 2013. doi:10.1016/j.enpol.2012.08.062.
-
(2013)
Energy Policy
, vol.52
, pp. 213-234
-
-
Armel, K.C.1
Gupta, A.2
Shrimali, G.3
Albert, A.4
-
14
-
-
84874570159
-
-
Technical Report R66141, DEFRA, May
-
J.-P. Zimmermann, M. Evans, J. Griggs, N. King, L. Harding, P. Roberts, and C. Evans. Household Electricity Survey. A study of domestic electrical product usage. Technical Report R66141, DEFRA, May 2012.
-
(2012)
Household Electricity Survey. A Study of Domestic Electrical Product Usage
-
-
Zimmermann, J.-P.1
Evans, M.2
Griggs, J.3
King, N.4
Harding, L.5
Roberts, P.6
Evans, C.7
-
15
-
-
84901319055
-
AMPds: A Public Dataset for Load Disaggregation and Eco-Feedback Research
-
S. Makonin, F. Popowich, L. Bartram, B. Gill, and I. V. Bajic. AMPds: A Public Dataset for Load Disaggregation and Eco-Feedback Research. In IEEE Electrical Power and Energy Conference, Halifax, NS, Canada, 2013.
-
IEEE Electrical Power and Energy Conference, Halifax, NS, Canada, 2013
-
-
Makonin, S.1
Popowich, F.2
Bartram, L.3
Gill, B.4
Bajic, I.V.5
-
19
-
-
84859094259
-
Disaggregation of home energy display data using probabilistic approach
-
doi:10.1109/TCE.2012.6170051
-
M. Zeifman. Disaggregation of home energy display data using probabilistic approach. IEEE Transactions on Consumer Electronics, 58(1):23-31, 2012. doi:10.1109/TCE.2012.6170051.
-
(2012)
IEEE Transactions on Consumer Electronics
, vol.58
, Issue.1
, pp. 23-31
-
-
Zeifman, M.1
-
20
-
-
84875162230
-
Bayesian Nonparametric Hidden Semi-Markov Models
-
arXiv:1203.1365
-
M. J. Johnson and A. S. Willsky. Bayesian Nonparametric Hidden Semi-Markov Models. Journal of Machine Learning Research, 14:673-701, 2013. arXiv:1203.1365.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 673-701
-
-
Johnson, M.J.1
Willsky, A.S.2
-
21
-
-
84868292476
-
Non-intrusive load monitoring using prior models of general appliance types
-
Toronto, ON, Canada
-
O. Parson, S. Ghosh, M. Weal, and A. Rogers. Non-intrusive load monitoring using prior models of general appliance types. In Proceedings of the 26th AAAI Conference on Artificial Intelligence, pages 356-362, Toronto, ON, Canada, 2012.
-
(2012)
Proceedings of the 26th AAAI Conference on Artificial Intelligence
, pp. 356-362
-
-
Parson, O.1
Ghosh, S.2
Weal, M.3
Rogers, A.4
-
22
-
-
84861556602
-
Learning to be energy-wise: Discriminative methods for load disaggregation
-
doi:10.1145/2208828.2208838
-
D. Rahayu, B. Narayanaswamy, S. Krishnaswamy, C. Labbe, and D. P. Seetharam. Learning to be energy-wise: Discriminative methods for load disaggregation. In 3rd International Conference on Future Energy Systems, pages 1-4, 2012. doi:10.1145/2208828.2208838.
-
(2012)
3rd International Conference on Future Energy Systems
, pp. 1-4
-
-
Rahayu, D.1
Narayanaswamy, B.2
Krishnaswamy, S.3
Labbe, C.4
Seetharam, D.P.5
-
23
-
-
84899423754
-
INDiC: Improved Non-Intrusive load monitoring using load Division and Calibration
-
N. Batra, H. Dutta, and A. Singh. INDiC: Improved Non-Intrusive load monitoring using load Division and Calibration. In International Conference of Machine Learning and Applications, Miami, FL, USA, 2013.
-
International Conference of Machine Learning and Applications, Miami, FL, USA, 2013
-
-
Batra, N.1
Dutta, H.2
Singh, A.3
-
24
-
-
84872896322
-
Event detection for non intrusive load monitoring
-
doi:10.1109/IECON.2012.6389367
-
K. Anderson, M. Berges, A. Ocneanu, D. Benitez, and J. Moura. Event detection for non intrusive load monitoring. In Proceedings of 38th Annual Conference on IEEE Industrial Electronics Society, pages 3312-3317, 2012. doi:10.1109/IECON.2012.6389367.
-
(2012)
Proceedings of 38th Annual Conference on IEEE Industrial Electronics Society
, pp. 3312-3317
-
-
Anderson, K.1
Berges, M.2
Ocneanu, A.3
Benitez, D.4
Moura, J.5
-
25
-
-
81455158564
-
Graphlab: A new parallel framework for machine learning
-
arXiv:1006.4990
-
Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Graphlab: A new parallel framework for machine learning. In Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, 2010. arXiv:1006.4990.
-
Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, 2010
-
-
Low, Y.1
Gonzalez, J.2
Kyrola, A.3
Bickson, D.4
Guestrin, C.5
Hellerstein, J.M.6
-
26
-
-
77955118435
-
ANNOT: Automated Electricity Data Annotation Using Wireless Sensor Networks
-
doi:10.1109/SECON.2010.5508248
-
A. Schoofs, A. Guerrieri, D. T. Delaney, G. O'Hare, and A. G. Ruzzelli. ANNOT: Automated Electricity Data Annotation Using Wireless Sensor Networks. In Proceedings of the 7th Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Communications and Networks, Boston, MA, USA, 2010. doi:10.1109/SECON.2010.5508248.
-
Proceedings of the 7th Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Communications and Networks, Boston, MA, USA, 2010
-
-
Schoofs, A.1
Guerrieri, A.2
Delaney, D.T.3
O'Hare, G.4
Ruzzelli, A.G.5
-
28
-
-
0031268341
-
Factorial Hidden Markov Models
-
Z. Ghahramani and M. I. Jordan. Factorial hidden markov models. Machine learning, 29(2-3):245-273, 1997. doi:10.1023/A:1007425814087. (Pubitemid 127510040)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 245-273
-
-
Ghahramani, Z.1
Jordan, M.I.2
-
30
-
-
84878649202
-
Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior
-
doi:10.1016/j.energy.2013.03.086
-
A. Kavousian, R. Rajagopal, and M. Fischer. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior. Energy, 55(0):184-194, 2013. doi:10.1016/j.energy.2013.03.086.
-
(2013)
Energy
, vol.55
, Issue.0
, pp. 184-194
-
-
Kavousian, A.1
Rajagopal, R.2
Fischer, M.3
-
32
-
-
84886468694
-
Empirical characterization and modeling of electrical loads in smart homes
-
Arlington, VA, USA, doi:10.1109/IGCC.2013.6604512
-
S. Barker, S. Kalra, D. Irwin, and P. Shenoy. Empirical characterization and modeling of electrical loads in smart homes. In IEEE International Green Computing Conference, pages 1-10, Arlington, VA, USA, 2013. doi:10.1109/IGCC. 2013.6604512.
-
(2013)
IEEE International Green Computing Conference
, pp. 1-10
-
-
Barker, S.1
Kalra, S.2
Irwin, D.3
Shenoy, P.4
-
33
-
-
77950189187
-
Load Signature Study - Part II: Disaggregation Framework, Simulation, and Applications
-
doi:10.1109/TPWRD.2009.2033800
-
J. Liang, S. K. K. Ng, G. Kendall, and J. W. M. Cheng. Load Signature Study - Part II: Disaggregation Framework, Simulation, and Applications. IEEE Transactions on Power Delivery, 25(2):561-569, 2010. doi:10.1109/TPWRD.2009. 2033800.
-
(2010)
IEEE Transactions on Power Delivery
, vol.25
, Issue.2
, pp. 561-569
-
-
Liang, J.1
Ng, S.K.K.2
Kendall, G.3
Cheng, J.W.M.4
|