메뉴 건너뛰기




Volumn 42, Issue 9, 2014, Pages 1989-2001

Simulation of self expanding transcatheter aortic valve in a realistic aortic root: Implications of deployment geometry on leaflet deformation

Author keywords

Finite element analysis; Patient specific; Self expanding; Transcatheter aortic valve

Indexed keywords

BLOOD VESSELS; COMPUTER SIMULATION; COMPUTERIZED TOMOGRAPHY; FINITE ELEMENT METHOD; STENTS;

EID: 84906946538     PISSN: 00906964     EISSN: 15739686     Source Type: Journal    
DOI: 10.1007/s10439-014-1051-3     Document Type: Article
Times cited : (71)

References (37)
  • 1
    • 84891295603 scopus 로고    scopus 로고
    • Patient-specific simulation of a stentless aortic valve implant: The impact of fibres on leaflet performance
    • 10.1080/10255842.2012.681645
    • Auricchio, F.; M. Conti, A. Ferrara, S. Morganti, and A. Reali. Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Comput. Methods Biomech. 17:277-285, 2012.
    • (2012) Comput. Methods Biomech. , vol.17 , pp. 277-285
    • Auricchio, F.1    Conti, M.2    Ferrara, A.3    Morganti, S.4    Reali, A.5
  • 2
    • 84899433940 scopus 로고    scopus 로고
    • Simulation of transcatheter aortic valve implantation: A patient-specific finite element approach
    • Auricchio, F.; M. Conti, S. Morganti, and A. Reali. Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput. Methods Biomech. Biomed. Engin. 17:1347-1357, 2014.
    • (2014) Comput. Methods Biomech. Biomed. Engin. , vol.17 , pp. 1347-1357
    • Auricchio, F.1    Conti, M.2
  • 3
    • 0031126082 scopus 로고    scopus 로고
    • Shape-memory alloys: Modeling and numerical simulations of the finite-strain superelastic behavior
    • 10.1016/S0045-7825(96)01147-4
    • Auricchio, F.; and R. L. Taylor. Shape-memory alloys: modeling and numerical simulations of the finite-strain superelastic behavior. Comput. Methods Biomech. 143:175-194, 1997.
    • (1997) Comput. Methods Biomech. , vol.143 , pp. 175-194
    • Auricchio, F.1    Taylor, R.L.2
  • 4
    • 0031191742 scopus 로고    scopus 로고
    • Shape-memory alloys: Macromodeling and numerical simulations of the superelastic behavior
    • 10.1016/S0045-7825(96)01232-7
    • Auricchio, F.; R. L. Taylor, and J. Lubliner. Shape-memory alloys: macromodeling and numerical simulations of the superelastic behavior. Comput. Methods Biomech. 146:281-312, 1997.
    • (1997) Comput. Methods Biomech. , vol.146 , pp. 281-312
    • Auricchio, F.1    Taylor, R.L.2    Lubliner, J.3
  • 5
  • 7
    • 84655167611 scopus 로고    scopus 로고
    • Prognostic implications of asymmetric morphology in transcatheter aortic valve implantation: A case report
    • 21783313 10.1016/j.recesp.2011.04.002
    • Cavero, M. A.; J. Goicolea, C. García-Montero, and J. F. Oteo. Prognostic implications of asymmetric morphology in transcatheter aortic valve implantation: a case report. Rev. Esp. Cardiol. 65:104-105, 2012.
    • (2012) Rev. Esp. Cardiol. , vol.65 , pp. 104-105
    • Cavero, M.A.1    Goicolea, J.2    García-Montero, C.3    Oteo, J.F.4
  • 8
    • 0141611799 scopus 로고    scopus 로고
    • Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes
    • 1:STN:280:DC%2BD3s7htVCltQ%3D%3D 10.1080/1025584021000048983
    • Einstein, D. R.; P. Reinhall, M. Nicosia, R. P. Cochran, and K. Kunzelman. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput. Methods Biomech. 6:33-44, 2003.
    • (2003) Comput. Methods Biomech. , vol.6 , pp. 33-44
    • Einstein, D.R.1    Reinhall, P.2    Nicosia, M.3    Cochran, R.P.4    Kunzelman, K.5
  • 9
    • 84899996841 scopus 로고    scopus 로고
    • An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics
    • 24719050 10.1007/s10439-014-1008-6
    • Gunning, P.; N. Saikrishnan, L. McNamara, and A. Yoganathan. An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Ann. Biomed. Eng. 42:1195-1206, 2014.
    • (2014) Ann. Biomed. Eng. , vol.42 , pp. 1195-1206
    • Gunning, P.1    Saikrishnan, N.2    McNamara, L.3    Yoganathan, A.4
  • 10
    • 84855403987 scopus 로고    scopus 로고
    • Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy
    • 22222074 10.1016/j.jacc.2011.09.045
    • Hamdan, A.; V. Guetta, E. Konen, O. Goitein, A. Segev, E. Raanani, D. Spiegelstein, I. Hay, E. Di Segni, M. Eldar, and E. Schwammenthal. Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. J. Am. Coll. Cardiol. 59:119-127, 2012.
    • (2012) J. Am. Coll. Cardiol. , vol.59 , pp. 119-127
    • Hamdan, A.1    Guetta, V.2    Konen, E.3    Goitein, O.4    Segev, A.5    Raanani, E.6    Spiegelstein, D.7    Hay, I.8    Di Segni, E.9    Eldar, M.10    Schwammenthal, E.11
  • 12
    • 79952721891 scopus 로고    scopus 로고
    • Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves
    • 3184529 21980326 10.1007/s13239-011-0035-9
    • Jermihov, P.; L. Jia, M. Sacks, R. Gorman, J. Gorman, and K. Chandran. Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc. Eng. Technol. 2:48-56, 2011.
    • (2011) Cardiovasc. Eng. Technol. , vol.2 , pp. 48-56
    • Jermihov, P.1    Jia, L.2    Sacks, M.3    Gorman, R.4    Gorman, J.5    Chandran, K.6
  • 13
    • 48149108560 scopus 로고    scopus 로고
    • Computational mechanics of Nitinol stent grafts
    • 1:STN:280:DC%2BD1crpt1Klsg%3D%3D 18644312 10.1016/j.jbiomech.2008.05.032
    • Kleinstreuer, C.; Z. Li, C. A. Basciano, S. Seelecke, and M. A. Farber. Computational mechanics of Nitinol stent grafts. J. Biomech. 41:2370-2378, 2008.
    • (2008) J. Biomech. , vol.41 , pp. 2370-2378
    • Kleinstreuer, C.1    Li, Z.2    Basciano, C.A.3    Seelecke, S.4    Farber, M.A.5
  • 14
    • 84894813020 scopus 로고    scopus 로고
    • In vitro assessment of the influence of aortic annulus ovality on the hydrodynamic performance of self-expanding transcatheter heart valve prostheses
    • 24495752 10.1016/j.jbiomech.2014.01.024
    • Kuetting, M.; A. Sedaghat, M. Utzenrath, J.-M. Sinning, C. Schmitz, J. Roggenkamp, N. Werner, T. Schmitz-Rode, and U. Steinseifer. In vitro assessment of the influence of aortic annulus ovality on the hydrodynamic performance of self-expanding transcatheter heart valve prostheses. J. Biomech. 47:957-965, 2014.
    • (2014) J. Biomech. , vol.47 , pp. 957-965
    • Kuetting, M.1    Sedaghat, A.2    Utzenrath, M.3    Sinning, J.-M.4    Schmitz, C.5    Roggenkamp, J.6    Werner, N.7    Schmitz-Rode, T.8    Steinseifer, U.9
  • 15
    • 0024673537 scopus 로고
    • The bovine pericardial xenograft: I. Effect of fixation in aldehydes without constraint on the tensile viscoelastic properties of bovine pericardium
    • 1:STN:280:DyaL1M3jsVWhtA%3D%3D 2715160 10.1002/jbm.820230502
    • Lee, J. M.; S. A. Haberer, and D. R. Boughner. The bovine pericardial xenograft: I. Effect of fixation in aldehydes without constraint on the tensile viscoelastic properties of bovine pericardium. J. Biomed. Mater. Res. 23:457-475, 1989.
    • (1989) J. Biomed. Mater. Res. , vol.23 , pp. 457-475
    • Lee, J.M.1    Haberer, S.A.2    Boughner, D.R.3
  • 16
    • 77955174837 scopus 로고    scopus 로고
    • Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: Implications for percutaneous valves
    • 20336372 10.1007/s10439-010-0009-3
    • Li, K.; and W. Sun. Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves. Ann. Biomed. Eng. 38:2690-2701, 2010.
    • (2010) Ann. Biomed. Eng. , vol.38 , pp. 2690-2701
    • Li, K.1    Sun, W.2
  • 17
    • 60749122787 scopus 로고    scopus 로고
    • A general first-invariant hyperelastic constitutive model
    • edited by J. J. C. Busfield and A. H. Muhr. Lisse: Swets & Zeitlinger Publishers
    • Marlow, R. S. A general first-invariant hyperelastic constitutive model. In: Constitutive Models for Rubber III, edited by J. J. C. Busfield and A. H. Muhr. Lisse: Swets & Zeitlinger Publishers, 2003, pp. 157-160.
    • (2003) Constitutive Models for Rubber III , pp. 157-160
    • Marlow, R.S.1
  • 18
    • 84905592693 scopus 로고    scopus 로고
    • Simulation of long-term fatigue damage in bioprosthetic heart valves: Effects of leaflet and stent elastic properties
    • doi: 10.1007/s10237-013-0532-x
    • Martin, C.; and W. Sun. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties. Biomech. Model. Mechanobiol. 2013. doi: 10.1007/s10237-013-0532-x.
    • (2013) Biomech. Model. Mechanobiol.
    • Martin, C.1    Sun, W.2
  • 20
    • 0037402768 scopus 로고    scopus 로고
    • Residual strains in conduit arteries
    • 1:STN:280:DC%2BD3s7ns12gsw%3D%3D 12694996 10.1016/S0021-9290(02)00444-X
    • Rachev, A.; and S. E. Greenwald. Residual strains in conduit arteries. J. Biomech. 36:661-670, 2003.
    • (2003) J. Biomech. , vol.36 , pp. 661-670
    • Rachev, A.1    Greenwald, S.E.2
  • 21
    • 83655184726 scopus 로고    scopus 로고
    • Transcatheter aortic valve implantation: Current and future approaches
    • 10.1038/nrcardio.2011.164
    • Rodes-Cabau, J. Transcatheter aortic valve implantation: current and future approaches. Nat. Rev. Cardiol. 9:15-29, 2012.
    • (2012) Nat. Rev. Cardiol. , vol.9 , pp. 15-29
    • Rodes-Cabau, J.1
  • 23
    • 0032161384 scopus 로고    scopus 로고
    • Orthotropic mechanical properties of chemically treated bovine pericardium
    • 1:STN:280:DyaK1cvltFansA%3D%3D 9779962 10.1114/1.135
    • Sacks, M.; and C. J. Chuong. Orthotropic mechanical properties of chemically treated bovine pericardium. Ann. Biomed. Eng. 26:892-902, 1998.
    • (1998) Ann. Biomed. Eng. , vol.26 , pp. 892-902
    • Sacks, M.1    Chuong, C.J.2
  • 24
    • 67651171003 scopus 로고    scopus 로고
    • On the biomechanics of heart valve function
    • 2746960 19540499 10.1016/j.jbiomech.2009.05.015
    • Sacks, M. S.; M. W. David, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42:1804-1824, 2009.
    • (2009) J. Biomech. , vol.42 , pp. 1804-1824
    • Sacks, M.S.1    David, M.W.2    Schmidt, D.E.3
  • 25
    • 84886244216 scopus 로고    scopus 로고
    • Hemodynamics of the Boston Scientific Lotus™ Valve: An in vitro study
    • Saikrishnan, N.; S. Gupta, and A. P. Yoganathan. Hemodynamics of the Boston Scientific Lotus™ Valve: an in vitro study. Cardiovasc. Eng. Technol. 4(4):427-439, 2013.
    • (2013) Cardiovasc. Eng. Technol. , vol.4 , Issue.4 , pp. 427-439
    • Saikrishnan, N.1    Gupta, S.2
  • 26
    • 68949174075 scopus 로고    scopus 로고
    • Geometry and degree of apposition of the CoreValve ReValving System with multislice computed tomography after implantation in patients with aortic stenosis
    • 19712801 10.1016/j.jacc.2009.04.075
    • Schultz, C. J.; A. Weustink, N. Piazza, A. Otten, N. Mollet, G. Krestin, R. J. van Geuns, P. de Feyter, P. W. J. Serruys, and P. de Jaegere. Geometry and degree of apposition of the CoreValve ReValving System with multislice computed tomography after implantation in patients with aortic stenosis. J. Am. Coll. Cardiol. 54:911-918, 2009.
    • (2009) J. Am. Coll. Cardiol. , vol.54 , pp. 911-918
    • Schultz, C.J.1    Weustink, A.2    Piazza, N.3    Otten, A.4    Mollet, N.5    Krestin, G.6    Van Geuns, R.J.7    De Feyter, P.8    Serruys, P.W.J.9    De Jaegere, P.10
  • 27
    • 78649328568 scopus 로고    scopus 로고
    • Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve
    • 1:STN:280:DC%2BC3cbovFagug%3D%3D 10.1016/j.jmbbm.2010.09.009
    • Smuts, A. N.; D. C. Blaine, C. Scheffer, H. Weich, A. F. Doubell, and K. H. Dellimore. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve. J. Mech. Behav. Biomed. 4:85-98, 2011.
    • (2011) J. Mech. Behav. Biomed. , vol.4 , pp. 85-98
    • Smuts, A.N.1    Blaine, D.C.2    Scheffer, C.3    Weich, H.4    Doubell, A.F.5    Dellimore, K.H.6
  • 28
    • 59049089773 scopus 로고    scopus 로고
    • Aortic root performance after valve sparing procedure: A comparative finite element analysis
    • 18786848 10.1016/j.medengphy.2008.07.009
    • Soncini, M.; E. Votta, S. Zinicchino, V. Burrone, A. Mangini, M. Lemma, C. Antona, and A. Redaelli. Aortic root performance after valve sparing procedure: a comparative finite element analysis. Med. Eng. Phys. 31:234-243, 2009.
    • (2009) Med. Eng. Phys. , vol.31 , pp. 234-243
    • Soncini, M.1    Votta, E.2    Zinicchino, S.3    Burrone, V.4    Mangini, A.5    Lemma, M.6    Antona, C.7    Redaelli, A.8
  • 29
    • 78549245100 scopus 로고    scopus 로고
    • Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment
    • 20817163 10.1016/j.jbiomech.2010.08.010
    • Sun, W.; K. Li, and E. Sirois. Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J. Biomech. 43:3085-3090, 2010.
    • (2010) J. Biomech. , vol.43 , pp. 3085-3090
    • Sun, W.1    Li, K.2    Sirois, E.3
  • 30
    • 0032870316 scopus 로고    scopus 로고
    • Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent
    • 1:CAS:528:DyaK1MXmtVantrc%3D 10449623 10.1002/(SICI)1097-4636(199911)47: 2<116: AID-JBM2>3.0.CO;2-J
    • Sung, H.-W.; Y. Chang, C.-T. Chiu, C.-N. Chen, and H.-C. Liang. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 47:116-126, 1999.
    • (1999) J. Biomed. Mater. Res. , vol.47 , pp. 116-126
    • Sung, H.-W.1    Chang, Y.2    Chiu, C.-T.3    Chen, C.-N.4    Liang, H.-C.5
  • 31
    • 0023274875 scopus 로고
    • The extension rate independence of the hysteresis in glutaraldehyde-fixed bovine pericardium
    • 1:CAS:528:DyaL2sXkvVert7g%3D 3111555 10.1016/0142-9612(87)90064-0
    • Trowbridge, E. A.; and C. E. Crofts. The extension rate independence of the hysteresis in glutaraldehyde-fixed bovine pericardium. Biomaterials 8:201-206, 1987.
    • (1987) Biomaterials , vol.8 , pp. 201-206
    • Trowbridge, E.A.1    Crofts, C.E.2
  • 32
    • 84874024731 scopus 로고    scopus 로고
    • Engineering perspective on transcatheter aortic valve implantation
    • 10.2217/ica.12.73
    • Tseng, E. E.; A. Wisneski, A. N. Azadani, and L. Ge. Engineering perspective on transcatheter aortic valve implantation. Int. Cardiol. 5:53-70, 2013.
    • (2013) Int. Cardiol. , vol.5 , pp. 53-70
    • Tseng, E.E.1    Wisneski, A.2    Azadani, A.N.3    Ge, L.4
  • 33
    • 84871496661 scopus 로고    scopus 로고
    • Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI)
    • 1:STN:280:DC%2BC38nmvVGgsg%3D%3D 22640661 10.1016/j.medengphy.2012.04.009
    • Tzamtzis, S.; J. Viquerat, J. Yap, M. J. Mullen, and G. Burriesci. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 35:125-130, 2013.
    • (2013) Med. Eng. Phys. , vol.35 , pp. 125-130
    • Tzamtzis, S.1    Viquerat, J.2    Yap, J.3    Mullen, M.J.4    Burriesci, G.5
  • 34
    • 84863588884 scopus 로고    scopus 로고
    • Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment
    • 3392407 22698832 10.1016/j.jbiomech.2012.05.008
    • Wang, Q.; E. Sirois, and W. Sun. Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. J. Biomech. 45:1965-1971, 2012.
    • (2012) J. Biomech. , vol.45 , pp. 1965-1971
    • Wang, Q.1    Sirois, E.2    Sun, W.3
  • 35
    • 77952012028 scopus 로고    scopus 로고
    • Finite element investigation of stentless pericardial aortic valves: Relevance of leaflet geometry
    • 20213213 10.1007/s10439-010-9940-6
    • Xiong, F.; W. Goetz, C. Chong, Y. Chua, S. Pfeifer, E. Wintermantel, and J. Yeo. Finite element investigation of stentless pericardial aortic valves: relevance of leaflet geometry. Ann. Biomed. Eng. 38:1908-1918, 2010.
    • (2010) Ann. Biomed. Eng. , vol.38 , pp. 1908-1918
    • Xiong, F.1    Goetz, W.2    Chong, C.3    Chua, Y.4    Pfeifer, S.5    Wintermantel, E.6    Yeo, J.7
  • 36
    • 77955276585 scopus 로고    scopus 로고
    • Simulation of a balloon expandable stent in a realistic coronary artery - Determination of the optimum modeling strategy
    • 20452594 10.1016/j.jbiomech.2010.03.050
    • Zahedmanesh, H.; D. John Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery - determination of the optimum modeling strategy. J. Biomech. 43:2126-2132, 2010.
    • (2010) J. Biomech. , vol.43 , pp. 2126-2132
    • Zahedmanesh, H.1    John Kelly, D.2    Lally, C.3
  • 37
    • 38349136447 scopus 로고    scopus 로고
    • Is it reasonable to treat all calcified stenotic aortic valves with a valved stent?: Results from a human anatomic study in adults
    • 18237689 10.1016/j.jacc.2007.10.023
    • Zegdi, R.; V. Ciobotaru, N. Miléna, S. Ghassan, L. Antoine, L. Christian, D. Alain, and F. Jean-Noël. Is it reasonable to treat all calcified stenotic aortic valves with a valved stent?: results from a human anatomic study in adults. J. Am. Coll. Cardiol. 51:579-584, 2008.
    • (2008) J. Am. Coll. Cardiol. , vol.51 , pp. 579-584
    • Zegdi, R.1    Ciobotaru, V.2    Miléna, N.3    Ghassan, S.4    Antoine, L.5    Christian, L.6    Alain, D.7    Jean-Noël, F.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.