메뉴 건너뛰기




Volumn 1, Issue , 2013, Pages 572-582

Models of semantic representation with visual attributes

Author keywords

[No Author keywords available]

Indexed keywords

BIMODAL MODELS; DISTRIBUTIONAL MODELS; PHYSICAL WORLD; SEMANTIC REPRESENTATION; VISUAL ATTRIBUTES; VISUAL MODALITIES; WORD ASSOCIATION; WORD REPRESENTATIONS;

EID: 84906927181     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (67)

References (56)
  • 1
    • 67651176167 scopus 로고    scopus 로고
    • Integrating experiential and distributional data to learn semantic representations
    • M. Andrews, G. Vigliocco, and D. Vinson. 2009. Integrating Experiential and Distributional Data to Learn Semantic Representations. Psychological Review, 116(3):463-498.
    • (2009) Psychological Review , vol.116 , Issue.3 , pp. 463-498
    • Andrews, M.1    Vigliocco, G.2    Vinson, D.3
  • 2
    • 77953151727 scopus 로고    scopus 로고
    • Strudel: A corpus-based semantic model based on properties and types
    • M. Baroni, B. Murphy, E. Barbu, and M. Poesio. 2010. Strudel: A Corpus-Based Semantic Model Based on Properties and Types. Cognitive Science, 34(2):222-254.
    • (2010) Cognitive Science , vol.34 , Issue.2 , pp. 222-254
    • Baroni, M.1    Murphy, B.2    Barbu, E.3    Poesio, M.4
  • 11
    • 84871385304 scopus 로고    scopus 로고
    • Distributional semantics with eyes: Using image analysis to improve computational representations of word meaning
    • New York, NY
    • E. Bruni, J. Uijlings, M. Baroni, and N. Sebe. 2012b. Distributional semantics with eyes: Using image analysis to improve computational representations of word meaning. In Proceedings of the 20th ACM International Conference on Multimedia, pages 1219-1228., New York, NY.
    • (2012) Proceedings of the 20th ACM International Conference on Multimedia , pp. 1219-1228
    • Bruni, E.1    Uijlings, J.2    Baroni, M.3    Sebe, N.4
  • 12
    • 70449378549 scopus 로고    scopus 로고
    • Automatically annotating images with keywords: A review of image annotation systems
    • C. Chai and C. Hung. 2008. Automatically Annotating Images with Keywords: A Review of Image Annotation Systems. Recent Patents on Computer Science, 1:55-68.
    • (2008) Recent Patents on Computer Science , vol.1 , pp. 55-68
    • Chai, C.1    Hung, C.2
  • 13
    • 43249093335 scopus 로고    scopus 로고
    • Image retrieval: Ideas, influences, and trends of the new age
    • R. Datta, D. Joshi, J. Li, and J. Z. Wang. 2008. Image Retrieval: Ideas, Influences, and Trends of the New Age. ACM Computing Surveys, 40(2):1-60.
    • (2008) ACM Computing Surveys , vol.40 , Issue.2 , pp. 1-60
    • Datta, R.1    Joshi, D.2    Li, J.3    Wang, J.Z.4
  • 20
    • 84859924694 scopus 로고    scopus 로고
    • Automatic image annotation using auxiliary text information
    • Columbus, Ohio
    • Y. Feng and M. Lapata. 2008. Automatic image annotation using auxiliary text information. In Proceedings of ACL-08: HLT, pages 272-280, Columbus, Ohio.
    • (2008) Proceedings of ACL-08: HLT , pp. 272-280
    • Feng, Y.1    Lapata, M.2
  • 22
    • 85161970171 scopus 로고    scopus 로고
    • Learning visual attributes
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, Massachusetts
    • V. Ferrari and A. Zisserman. 2007. Learning Visual Attributes. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 433-440. MIT Press, Cambridge, Massachusetts.
    • (2007) Advances in Neural Information Processing Systems 20 , pp. 433-440
    • Ferrari, V.1    Zisserman, A.2
  • 23
    • 0019576431 scopus 로고
    • A block lanczoz method for computing the singular values and corresponding singular vectors of a matrix
    • G. H. Golub, F. T. Luk, and M. L. Overton. 1981. A block lanczoz method for computing the singular values and corresponding singular vectors of a matrix. ACM Transactions on Mathematical Software, 7:149-169.
    • (1981) ACM Transactions on Mathematical Software , vol.7 , pp. 149-169
    • Golub, G.H.1    Luk, F.T.2    Overton, M.L.3
  • 26
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-Taylor. 2004. Canonical Correlation Analysis: An Overview with Application to Learning Methods. Neural Computation, 16(12):2639-2664.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.R.2    Shawe-Taylor, J.R.3
  • 27
    • 84855935132 scopus 로고    scopus 로고
    • Perceptual inference through global lexical similarity
    • B. T. Johns and M. N. Jones. 2012. Perceptual Inference through Global Lexical Similarity. Topics in Cognitive Science, 4(1):103-120.
    • (2012) Topics in Cognitive Science , vol.4 , Issue.1 , pp. 103-120
    • Johns, B.T.1    Jones, M.N.2
  • 31
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • Miami Beach, Florida
    • C. H. Lampert, H. Nickisch, and S. Harmeling. 2009. Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer. In Computer Vision and Pattern Recognition, pages 951-958, Miami Beach, Florida.
    • (2009) Computer Vision and Pattern Recognition , pp. 951-958
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 32
    • 0031869677 scopus 로고    scopus 로고
    • Object perception and object naming in early development
    • B. Landau, L. Smith, and S. Jones. 1998. Object Perception and Object Naming in Early Development. Trends in Cognitive Science, 27:19-24.
    • (1998) Trends in Cognitive Science , vol.27 , pp. 19-24
    • Landau, B.1    Smith, L.2    Jones, S.3
  • 36
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. 2004. Distinctive Image Features from Scale-invariant Keypoints. International Journal of Computer Vision, 60(2):91-110.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 38
    • 33646393800 scopus 로고    scopus 로고
    • Semantic feature production norms for a large set of living and nonliving things
    • K. McRae, G. S. Cree, M. S. Seidenberg, and C. McNorgan. 2005. Semantic Feature Production Norms for a Large Set of Living and Nonliving Things. Behavior Research Methods, 37(4):547-559.
    • (2005) Behavior Research Methods , vol.37 , Issue.4 , pp. 547-559
    • McRae, K.1    Cree, G.S.2    Seidenberg, M.S.3    McNorgan, C.4
  • 41
    • 36548999696 scopus 로고    scopus 로고
    • The role of context in object recognition
    • A. Oliva and A. Torralba. 2007. The Role of Context in Object Recognition. Trends in Cognitive Sciences, 11(12):520-527.
    • (2007) Trends in Cognitive Sciences , vol.11 , Issue.12 , pp. 520-527
    • Oliva, A.1    Torralba, A.2
  • 45
    • 0036152936 scopus 로고    scopus 로고
    • Learning words from sights and sounds: A computational model
    • D. Roy and A. Pentland. 2002. Learning Words from Sights and Sounds: A Computational Model. Cognitive Science, 26(1):113-146.
    • (2002) Cognitive Science , vol.26 , Issue.1 , pp. 113-146
    • Roy, D.1    Pentland, A.2
  • 47
    • 0002480013 scopus 로고    scopus 로고
    • Grounding the lexical semantics of verbs in visual perception using force dynamics and event logic
    • J. M. Siskind. 2001. Grounding the Lexical Semantics of Verbs in Visual Perception using Force Dynamics and Event Logic. Journal of Artificial Intelligence Research, 15:31-90.
    • (2001) Journal of Artificial Intelligence Research , vol.15 , pp. 31-90
    • Siskind, J.M.1
  • 48
    • 0031638040 scopus 로고    scopus 로고
    • Similarity as an explanatory construct
    • S. A. Sloman and L. J. Ripps. 1998. Similarity as an Explanatory Construct. Cognition, 65:87-101.
    • (1998) Cognition , vol.65 , pp. 87-101
    • Sloman, S.A.1    Ripps, L.J.2
  • 50
    • 77649189749 scopus 로고    scopus 로고
    • Combining feature norms and text data with topic models
    • M. Steyvers. 2010. Combining feature norms and text data with topic models. Acta Psychologica, 133(3):234-342.
    • (2010) Acta Psychologica , vol.133 , Issue.3 , pp. 234-342
    • Steyvers, M.1
  • 53
    • 34249701400 scopus 로고    scopus 로고
    • A unified model of early word learning integrating statistical and social cues
    • C. Yu and D. H. Ballard. 2007. A Unified Model of Early Word Learning Integrating Statistical and Social Cues. Neurocomputing, 70:2149-2165.
    • (2007) Neurocomputing , vol.70 , pp. 2149-2165
    • Yu, C.1    Ballard, D.H.2
  • 54
    • 77649182703 scopus 로고    scopus 로고
    • Finding the features that represent stimuli
    • M. D. Zeigenfuse and M. D. Lee. 2010. Finding the Features that Represent Stimuli. Acta Psychological, 133(3):283-295.
    • (2010) Acta Psychological , vol.133 , Issue.3 , pp. 283-295
    • Zeigenfuse, M.D.1    Lee, M.D.2
  • 56
    • 36348934176 scopus 로고    scopus 로고
    • Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars
    • Edinburgh, UK
    • L. S. Zettlemoyer and M. Collins. 2005. Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 658-666, Edinburgh, UK.
    • (2005) Proceedings of the Conference on Uncertainty in Artificial Intelligence , pp. 658-666
    • Zettlemoyer, L.S.1    Collins, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.