메뉴 건너뛰기




Volumn 2013-August, Issue , 2013, Pages 199-204

Mr. MIRA: Open-source large-margin structured learning on MapReduce

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; COMPUTER AIDED LANGUAGE TRANSLATION; DECODING; LEARNING SYSTEMS; MACHINE TRANSLATION; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 84906928780     PISSN: 0736587X     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (19)
  • 1
    • 85024115120 scopus 로고    scopus 로고
    • An empirical study of smoothing techniques for language modeling
    • S. Chen and J. Goodman. 1996. An empirical study of smoothing techniques for language modeling. In ACL.
    • (1996) ACL
    • Chen, S.1    Goodman, J.2
  • 2
    • 84863365416 scopus 로고    scopus 로고
    • 11,001 new features for statistical machine translation
    • D. Chiang, K. Knight, and W. Wang. 2009. 11,001 new features for statistical machine translation. In NAACL-HLT.
    • (2009) NAACL-HLT
    • Chiang, D.1    Knight, K.2    Wang, W.3
  • 3
    • 84860663465 scopus 로고    scopus 로고
    • Hope and fear for discriminative training of statistical translation models
    • D. Chiang. 2012. Hope and fear for discriminative training of statistical translation models. JMLR, 13:1159–1187.
    • (2012) JMLR , vol.13 , pp. 1159-1187
    • Chiang, D.1
  • 4
    • 85045072379 scopus 로고    scopus 로고
    • Ranking algorithms for named-entity extraction: boosting and the voted perceptron
    • M. Collins. 2002. Ranking algorithms for named-entity extraction: boosting and the voted perceptron. In ACL.
    • (2002) ACL
    • Collins, M.1
  • 6
    • 84858729241 scopus 로고    scopus 로고
    • Adaptive regularization of weight vectors
    • K. Crammer, A. Kulesza, and M. Dredze. 2009. Adaptive regularization of weight vectors. In NIPS.
    • (2009) NIPS
    • Crammer, K.1    Kulesza, A.2    Dredze, M.3
  • 7
    • 85030321143 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. 2004. MapReduce: Simplified data processing on large clusters. In OSDI.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 8
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12:2121–2159.
    • (2011) JMLR , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 10
    • 84907368273 scopus 로고    scopus 로고
    • Fast and adaptive online training of feature-rich translation models
    • S. Green, S. Wang, D. Cer, and C. Manning. 2013. Fast and adaptive online training of feature-rich translation models. In ACL.
    • (2013) ACL
    • Green, S.1    Wang, S.2    Cer, D.3    Manning, C.4
  • 11
    • 85122938002 scopus 로고    scopus 로고
    • Analysing the effect of out-of-domain data on smt systems
    • B. Haddow and P. Koehn. 2012. Analysing the effect of out-of-domain data on smt systems. In WMT.
    • (2012) WMT
    • Haddow, B.1    Koehn, P.2
  • 12
    • 84907317454 scopus 로고    scopus 로고
    • SampleRank training for phrase-based machine translation
    • B. Haddow, A. Arun, and P. Koehn. 2011. SampleRank training for phrase-based machine translation. In WMT.
    • (2011) WMT
    • Haddow, B.1    Arun, A.2    Koehn, P.3
  • 13
    • 0000636553 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • T. Joachims. 1998. Text categorization with support vector machines: Learning with many relevant features. In ECML.
    • (1998) ECML
    • Joachims, T.1
  • 14
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 15
    • 84859925125 scopus 로고    scopus 로고
    • Online large-margin training of dependency parsers
    • R. McDonald, K. Crammer, and F. Pereira. 2005. Online large-margin training of dependency parsers. In ACL.
    • (2005) ACL
    • McDonald, R.1    Crammer, K.2    Pereira, F.3
  • 16
    • 85133336275 scopus 로고    scopus 로고
    • BLEU: a method for automatic evaluation of machine translation
    • K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002. BLEU: a method for automatic evaluation of machine translation. In ACL.
    • (2002) ACL
    • Papineni, K.1    Roukos, S.2    Ward, T.3    Zhu, W.-J.4
  • 17
    • 84860520429 scopus 로고    scopus 로고
    • Guided learning for bidirectional sequence classification
    • L. Shen. 2007. Guided learning for bidirectional sequence classification. In ACL.
    • (2007) ACL
    • Shen, L.1
  • 18
    • 84878179266 scopus 로고    scopus 로고
    • Joint feature selection in distributed stochastic learning for large-scale discriminative training in SMT
    • P. Simianer, S. Riezler, and C. Dyer. 2012. Joint feature selection in distributed stochastic learning for large-scale discriminative training in SMT. In ACL.
    • (2012) ACL
    • Simianer, P.1    Riezler, S.2    Dyer, C.3
  • 19


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.