메뉴 건너뛰기




Volumn 21, Issue 3, 2013, Pages 475-501

Restricted Normal Cones and the Method of Alternating Projections: Applications

Author keywords

Convex set; Friedrichs angle; Linear convergence; Method of alternating projections; Nonconvex set; Normal cone; Projection operator; Restricted normal cone; Superregularity

Indexed keywords

CONVEX SET; FRIEDRICH ANGLE; LINEAR CONVERGENCE; METHOD OF ALTERNATING PROJECTIONS; NONCONVEX SETS; NORMAL CONES; PROJECTION OPERATOR; RESTRICTED NORMAL CONE; SUPERREGULARITY;

EID: 84881222107     PISSN: 09276947     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11228-013-0238-3     Document Type: Article
Times cited : (46)

References (29)
  • 2
    • 0001448913 scopus 로고
    • On the convergence of von Neumann's alternating projection algorithm for two sets
    • Bauschke, H. H., Borwein, J. M.: On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Anal. 2, 185-212 (1993).
    • (1993) Set-Valued Anal. , vol.2 , pp. 185-212
    • Bauschke, H.H.1    Borwein, J.M.2
  • 3
    • 0030246542 scopus 로고    scopus 로고
    • On projection algorithms for solving convex feasibility problems
    • Bauschke, H. H., Borwein, J. M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367-426 (1996).
    • (1996) SIAM Rev. , vol.38 , pp. 367-426
    • Bauschke, H.H.1    Borwein, J.M.2
  • 4
    • 0002351732 scopus 로고    scopus 로고
    • The method of cyclic projections for closed convex sets in Hilbert space
    • In: Censor, Y., Reich, S. (eds.) Contemporary Mathematics American Mathematical Society (1997)
    • Bauschke, H. H., Borwein, J. M., Lewis, A. S.: The method of cyclic projections for closed convex sets in Hilbert space. In: Censor, Y., Reich, S. (eds.) Recent Developments in Optimization Theory and Nonlinear Analysis (Jerusalem 1995). Contemporary Mathematics, vol. 204, pp. 1-38. American Mathematical Society (1997).
    • Recent Developments in Optimization Theory and Nonlinear Analysis (Jerusalem 1995) , vol.204 , pp. 1-38
    • Bauschke, H.H.1    Borwein, J.M.2    Lewis, A.S.3
  • 7
    • 84881239072 scopus 로고    scopus 로고
    • Restricted normal cones and sparsity optimization with affine constraints
    • (in press). arXiv preprint
    • Bauschke, H. H., Luke, D. R., Phan, H. M., Wang, X.: Restricted normal cones and sparsity optimization with affine constraints. Found. Comput. Math. (2012, in press). arXiv preprint. http://arxiv. org.
    • (2012) Found. Comput. Math
    • Bauschke, H.H.1    Luke, D.R.2    Phan, H.M.3    Wang, X.4
  • 11
    • 0025535641 scopus 로고
    • Method of successive projections for finding a common point of sets in metric spaces
    • Combettes, P. L., Trussell, H. J.: Method of successive projections for finding a common point of sets in metric spaces. J. Optim. Theory Appl. 67, 487-507 (1990).
    • (1990) J. Optim. Theory Appl. , vol.67 , pp. 487-507
    • Combettes, P.L.1    Trussell, H.J.2
  • 12
    • 0002441985 scopus 로고    scopus 로고
    • The angle between subspaces of a Hilbert space
    • In: Singh, S. P., Carbone, A., Watson, B. (eds.) NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences Kluwer (1995)
    • Deutsch, F.: The angle between subspaces of a Hilbert space. In: Singh, S. P., Carbone, A., Watson, B. (eds.) Approximation Theory, Wavelets and Applications (Maratea, 1994). NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 454, pp. 107-130. Kluwer (1995).
    • Approximation Theory, Wavelets and Applications (Maratea, 1994) , vol.454 , pp. 107-130
    • Deutsch, F.1
  • 14
    • 33748169660 scopus 로고    scopus 로고
    • The rate of convergence for the cyclic projections algorithm I: angles between convex sets
    • Deutsch, F., Hundal, H.: The rate of convergence for the cyclic projections algorithm I: angles between convex sets. J. Approx. Theory 142, 36-55 (2006).
    • (2006) J. Approx. Theory , vol.142 , pp. 36-55
    • Deutsch, F.1    Hundal, H.2
  • 15
    • 33748195922 scopus 로고    scopus 로고
    • The rate of convergence for the cyclic projections algorithm II: norms of nonlinear operators
    • Deutsch, F., Hundal, H.: The rate of convergence for the cyclic projections algorithm II: norms of nonlinear operators. J. Approx. Theory 142, 56-82 (2006).
    • (2006) J. Approx. Theory , vol.142 , pp. 56-82
    • Deutsch, F.1    Hundal, H.2
  • 16
    • 56249100034 scopus 로고    scopus 로고
    • The rate of convergence for the cyclic projections algorithm III: regularity of convex sets
    • Deutsch, F., Hundal, H.: The rate of convergence for the cyclic projections algorithm III: regularity of convex sets. J. Approx. Theory 155, 155-184 (2008).
    • (2008) J. Approx. Theory , vol.155 , pp. 155-184
    • Deutsch, F.1    Hundal, H.2
  • 17
    • 0001913752 scopus 로고
    • Étude sur les variétés et les opérateurs de Julia, avec quelques applications
    • Dixmier, J.: Étude sur les variétés et les opérateurs de Julia, avec quelques applications. B. Soc. Math. Fr. 77, 11-101 (1949).
    • (1949) B. Soc. Math. Fr. , vol.77 , pp. 11-101
    • Dixmier, J.1
  • 18
    • 84968486297 scopus 로고
    • On certain inequalities and characteristic value problems for analytic functions and for functions of two variables
    • Friedrichs, K.: On certain inequalities and characteristic value problems for analytic functions and for functions of two variables. Trans. Amer. Math. Soc. 41, 321-364 (1937).
    • (1937) Trans. Amer. Math. Soc. , vol.41 , pp. 321-364
    • Friedrichs, K.1
  • 19
    • 33845708830 scopus 로고
    • The method of projections for finding the common point of convex sets
    • Gubin, L. G., Polyak, B. T., Raik, E. V.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 7, 1-24 (1967).
    • (1967) USSR Comput. Math. Math. Phys. , vol.7 , pp. 1-24
    • Gubin, L.G.1    Polyak, B.T.2    Raik, E.V.3
  • 20
    • 70349387487 scopus 로고    scopus 로고
    • Local linear convergence for alternating and averaged nonconvex projections
    • Lewis, A. S., Luke, D. R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9, 485-513 (2009).
    • (2009) Found. Comput. Math. , vol.9 , pp. 485-513
    • Lewis, A.S.1    Luke, D.R.2    Malick, J.3
  • 21
    • 48549094732 scopus 로고    scopus 로고
    • Alternating projection on manifolds
    • Lewis, A. S., Malick, J.: Alternating projection on manifolds. Math. Oper. Res. 33, 216-234 (2008).
    • (2008) Math. Oper. Res. , vol.33 , pp. 216-234
    • Lewis, A.S.1    Malick, J.2
  • 22
    • 50049097331 scopus 로고    scopus 로고
    • Finding best approximation pairs relative to a convex and a prox-regular set in a Hilbert space
    • Luke, D. R.: Finding best approximation pairs relative to a convex and a prox-regular set in a Hilbert space. SIAM J. Optim. 19(2), 714-739 (2008).
    • (2008) SIAM J. Optim. , vol.19 , Issue.2 , pp. 714-739
    • Luke, D.R.1
  • 23
    • 82155167605 scopus 로고    scopus 로고
    • Local linear convergence and approximate projections onto regularized sets
    • Luke, D. R.: Local linear convergence and approximate projections onto regularized sets. Nonlinear Anal. 75, 1531-1546 (2012).
    • (2012) Nonlinear Anal. , vol.75 , pp. 1531-1546
    • Luke, D.R.1
  • 25
    • 0004267646 scopus 로고
    • Princeton: Princeton University Press
    • Rockafellar, R. T.: Convex Analysis. Princeton University Press, Princeton (1970).
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 29
    • 51249194625 scopus 로고
    • On the factorization of matrices
    • Wiener, N.: On the factorization of matrices. Comment. Math. Helv. 29, 97-111 (1955).
    • (1955) Comment. Math. Helv. , vol.29 , pp. 97-111
    • Wiener, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.