메뉴 건너뛰기




Volumn 47, Issue 2, 2014, Pages 119-133

Effect of reduced iron on the degradation of chlorinated hydrocarbons in contaminated soil and ground water: A review of publications

Author keywords

dechlorination; ethanes; ethenes; methanes; organic compounds; pollutants

Indexed keywords

CHLORINATED HYDROCARBON; CONTAMINATED LAND; DECHLORINATION; ETHANE; ETHYLENE; GROUNDWATER POLLUTION; IRON; METHANE; ORGANIC POLLUTANT; REDOX POTENTIAL; SOIL POLLUTION;

EID: 84906825090     PISSN: 10642293     EISSN: None     Source Type: Journal    
DOI: 10.1134/S1064229314020136     Document Type: Article
Times cited : (24)

References (74)
  • 1
  • 10
    • 84866872838 scopus 로고    scopus 로고
    • Organic substances of technogenic origin in water of urban rivers
    • VINITI, Moscow:
    • E. P. Yanin, “Organic substances of technogenic origin in water of urban rivers,” in Environmental Expertise: Information Review (VINITI, Moscow, 2004), No. 4, pp. 42–64 [in Russian].
    • (2004) Environmental Expertise: Information Review , pp. 42-64
    • Yanin, E.P.1
  • 11
    • 0037108315 scopus 로고    scopus 로고
    • Effect of carbonate species on the kinetics of dichloroethene by zero-valent iron
    • A. Agrawel, W. J. Ferguson, B. O. Gardner, J. A. Chris, et al., “Effect of carbonate species on the kinetics of dichloroethene by zero-valent iron,” Environ. Sci. Technol. 36, 4326–4333 (2002).
    • (2002) Environ. Sci. Technol. , vol.36 , pp. 4326-4333
    • Agrawel, A.1    Ferguson, W.J.2    Gardner, B.O.3    Chris, J.A.4
  • 12
    • 0034326279 scopus 로고    scopus 로고
    • Dechlorination of carbon tetrachloride by Fe(II) associated with goethite
    • J. Amonette, D. Workman, D. Kennedy, J. Fruchter, Y. Gorby, “Dechlorination of carbon tetrachloride by Fe(II) associated with goethite,” Environ. Sci. Technol. 34, 4606–4613 (2000).
    • (2000) Environ. Sci. Technol. , vol.34 , pp. 4606-4613
    • Amonette, J.1    Workman, D.2    Kennedy, D.3    Fruchter, J.4    Gorby, Y.5
  • 13
    • 0025289157 scopus 로고
    • Tetrachloroethylene transformation to trichloroethylene and Cis-1,2-dichloroethylene by sulfate-reducing enrichment cultures
    • D. M. Bagley and J. M. Gossett, “Tetrachloroethylene transformation to trichloroethylene and Cis-1,2-dichloroethylene by sulfate-reducing enrichment cultures,” Appl. Environ. Microbiol. 56, 2511–2516 (1990).
    • (1990) Appl. Environ. Microbiol. , vol.56 , pp. 2511-2516
    • Bagley, D.M.1    Gossett, J.M.2
  • 15
    • 0028879607 scopus 로고
    • Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system
    • D. R. Burris, Y. J. Campbell, and V. S. Manoranjan, “Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system,” Environ. Sci. Technol. 29, 2850–2855 (1995).
    • (1995) Environ. Sci. Technol. , vol.29 , pp. 2850-2855
    • Burris, D.R.1    Campbell, Y.J.2    Manoranjan, V.S.3
  • 16
    • 0032080493 scopus 로고    scopus 로고
    • Effects of solution composition and pH on the reductive dechlorination of hexachloroethylene by iron sulfide
    • E. C. Butler and K. F. Hayes, “Effects of solution composition and pH on the reductive dechlorination of hexachloroethylene by iron sulfide,” Environ. Sci. Technol. 32, 1276–1284 (1998).
    • (1998) Environ. Sci. Technol. , vol.32 , pp. 1276-1284
    • Butler, E.C.1    Hayes, K.F.2
  • 17
    • 0035470798 scopus 로고    scopus 로고
    • Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal
    • E. C. Butler and K. F. Hayes, “Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal,” Environ. Sci. Technol. 35, 3884–3891 (2001).
    • (2001) Environ. Sci. Technol. , vol.35 , pp. 3884-3891
    • Butler, E.C.1    Hayes, K.F.2
  • 18
    • 0034141275 scopus 로고    scopus 로고
    • Kinetics of transformation of halogenated aliohatic compounds by iron sulfide
    • E. C. Butler and K. F. Hayes, “Kinetics of transformation of halogenated aliohatic compounds by iron sulfide,” Environ. Sci. Technol. 34, 422–429 (2000).
    • (2000) Environ. Sci. Technol. , vol.34 , pp. 422-429
    • Butler, E.C.1    Hayes, K.F.2
  • 19
    • 0035985882 scopus 로고    scopus 로고
    • Dechlorination of pentachloroethane by commercial Fe and ferruginous smectite
    • J. Cervini, R. A. Larson, J. Wu, and J. W. Stucki, “Dechlorination of pentachloroethane by commercial Fe and ferruginous smectite,” Chemosphere 47, 971–976 (2002).
    • (2002) Chemosphere , vol.47 , pp. 971-976
    • Cervini, J.1    Larson, R.A.2    Wu, J.3    Stucki, J.W.4
  • 20
    • 71049124039 scopus 로고    scopus 로고
    • Reductive dechlorination of carbon tetrachloride in acidic soil manipulated with iron(II) and bisulfide ion
    • K. Choi and W. Lee, “Reductive dechlorination of carbon tetrachloride in acidic soil manipulated with iron(II) and bisulfide ion,” J. Hazard. Mat. 172, 523–630 (2009).
    • (2009) J. Hazard. Mat. , vol.172 , pp. 523-630
    • Choi, K.1    Lee, W.2
  • 21
    • 77953482842 scopus 로고    scopus 로고
    • Field evidence for co-metabolism of trichloroethene stimulared by addition of electron donor to groundwater
    • M. E. Conrad, E. L. Brodie, C. W. Radtke, M. Bill, et al., “Field evidence for co-metabolism of trichloroethene stimulared by addition of electron donor to groundwater,” Environ. Sci. Technol. 44, 4697–4704 (2010).
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 4697-4704
    • Conrad, M.E.1    Brodie, E.L.2    Radtke, C.W.3    Bill, M.4
  • 22
    • 38049058838 scopus 로고    scopus 로고
    • In situ chemical reduction (ISCR) technologies: significance of low Eh reactions
    • J. Dolfing, M. Van Eekert, A. Seech, J. Vogan, J. Mueller, “In situ chemical reduction (ISCR) technologies: significance of low Eh reactions,” Soil Sediment Contamin. 17, 63–74 (2008).
    • (2008) Soil Sediment Contamin. , vol.17 , pp. 63-74
    • Dolfing, J.1    Eekert, M.V.2    Seech, A.3    Vogan, J.4    Mueller, J.5
  • 23
    • 27644454434 scopus 로고    scopus 로고
    • Combined removal of chlorinated ethane’s and heavy metals by zerovalent iron in batch and continuous flow column systems
    • J. Dries, L. Bastiaens, D. Springael, S. N. Agathos, L. Diels, “Combined removal of chlorinated ethane’s and heavy metals by zerovalent iron in batch and continuous flow column systems,” Environ. Sci. Technol. 39, 8460–8469 (2005).
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 8460-8469
    • Dries, J.1    Bastiaens, L.2    Springael, D.3    Agathos, S.N.4    Diels, L.5
  • 24
    • 1842678457 scopus 로고    scopus 로고
    • Mechanisms and products of surface-mediated reductive dechlogenation of carbon tetrachloride by Fe(II) on goethite
    • M. Elsner, S. B. Haderlein, T. Kellerhals, S. Luzi, L. Zwank, W. Angst, R. P. Schwarzenbach, “Mechanisms and products of surface-mediated reductive dechlogenation of carbon tetrachloride by Fe(II) on goethite,” Environ. Sci. Technol. 38, 2058–2066 (2004).
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 2058-2066
    • Elsner, M.1    Haderlein, S.B.2    Kellerhals, T.3    Luzi, S.4    Zwank, L.5    Angst, W.6    Schwarzenbach, R.P.7
  • 25
    • 0842284771 scopus 로고    scopus 로고
    • Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants
    • M. Elsner and R. P. Schwarzenbach, et al., “Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants,” Environ. Sci. Technol. 38, 799–807 (2004).
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 799-807
    • Elsner, M.1    Schwarzenbach, R.P.2
  • 26
    • 0033556291 scopus 로고    scopus 로고
    • Reductive dechlorination of carbon tetrachloride using iron(II)/iron(III) hydroxide sulfate (green rust)
    • M. Erbs, H. C. B. Hansen, and C. E. Olsen, “Reductive dechlorination of carbon tetrachloride using iron(II)/iron(III) hydroxide sulfate (green rust),” Environ. Sci. Technol. 33, 307–311 (1999).
    • (1999) Environ. Sci. Technol. , vol.33 , pp. 307-311
    • Erbs, M.1    Hansen, H.C.B.2    Olsen, C.E.3
  • 27
    • 0032126169 scopus 로고    scopus 로고
    • Reaction of 1.1.1-trichloroethane with zero-valent metals and bimetallic reductants
    • J. P. Fennelly and A. I. Roberts, “Reaction of 1.1.1-trichloroethane with zero-valent metals and bimetallic reductants,” Environ. Sci. Technol. 32, 1980–1988 (1998).
    • (1998) Environ. Sci. Technol. , vol.32 , pp. 1980-1988
    • Fennelly, J.P.1    Roberts, A.I.2
  • 28
    • 1642361807 scopus 로고    scopus 로고
    • Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite
    • M. L. Ferrey and R. T. Wilkin, “Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite,” Environ. Sci. Technol. 38, 1746–1752 (2004).
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 1746-1752
    • Ferrey, M.L.1    Wilkin, R.T.2
  • 29
    • 0037114999 scopus 로고    scopus 로고
    • Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zerovalent iron
    • Y. Furukawa, J. W. Kim, J. Watkins, and R. T. Wilkin, “Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zerovalent iron,” Environ. Sci. Technol. 36, 5469–5475 (2002).
    • (2002) Environ. Sci. Technol. , vol.36 , pp. 5469-5475
    • Furukawa, Y.1    Kim, J.W.2    Watkins, J.3    Wilkin, R.T.4
  • 31
    • 0028193680 scopus 로고
    • Evaluation of the free energy of formation of iron(II) iron(III)-hydroxide-sulphate (green rust) and its reduction of nitrite
    • H. C. B. Hansen, O. K. Borggaard, and J. Sorensen, “Evaluation of the free energy of formation of iron(II) iron(III)-hydroxide-sulphate (green rust) and its reduction of nitrite,” Geochim. Cosmochim Acta 58, 2599–2608 (1994).
    • (1994) Geochim. Cosmochim Acta , vol.58 , pp. 2599-2608
    • Hansen, H.C.B.1    Borggaard, O.K.2    Sorensen, J.3
  • 32
    • 0034064514 scopus 로고    scopus 로고
    • Reaction of halogenated hydrocarbons in aqueous media. I. involvement of sulfur in iron catalysis
    • S. M. Hassan, “Reaction of halogenated hydrocarbons in aqueous media. I. involvement of sulfur in iron catalysis,” Chemosphere 40, 1357–1363 (2000).
    • (2000) Chemosphere , vol.40 , pp. 1357-1363
    • Hassan, S.M.1
  • 33
    • 34247402911 scopus 로고    scopus 로고
    • Long-term performance of zero-valent iron permeable reactive barriers: a critical review
    • A. D. Henderson and A. H. Demind, “Long-term performance of zero-valent iron permeable reactive barriers: a critical review,” Environ. Eng. Sci. 24, 401–423 (2007).
    • (2007) Environ. Eng. Sci. , vol.24 , pp. 401-423
    • Henderson, A.D.1    Demind, A.H.2
  • 34
    • 0032450045 scopus 로고    scopus 로고
    • Reductive dechlorination in the energy metabolism of anaerobic bacteria
    • C. Holliger, G. Wohlfarth, and G. Deikert, “Reductive dechlorination in the energy metabolism of anaerobic bacteria,” FEMS Microbiol. Rev. 22, 383–398 (1999).
    • (1999) FEMS Microbiol. Rev. , vol.22 , pp. 383-398
    • Holliger, C.1    Wohlfarth, G.2    Deikert, G.3
  • 35
    • 67651004287 scopus 로고    scopus 로고
    • Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils
    • Y. R. Katsenovich and F. R. Mirralis-Wilhelm, “Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils,” Sci. Total Environ. 407, 4986–4993 (2009).
    • (2009) Sci. Total Environ. , vol.407 , pp. 4986-4993
    • Katsenovich, Y.R.1    Mirralis-Wilhelm, F.R.2
  • 36
    • 0028273831 scopus 로고
    • Transformation of carbon tetracloride by pyrite in aqueous solution
    • M. R. Kreigman-King and M. Reinhard, “Transformation of carbon tetracloride by pyrite in aqueous solution,” Environ. Sci. Technol. 28, 692–700 (1994).
    • (1994) Environ. Sci. Technol. , vol.28 , pp. 692-700
    • Kreigman-King, M.R.1    Reinhard, M.2
  • 37
    • 31144474718 scopus 로고    scopus 로고
    • Field monitoring of a permeable reactive barrier for removal of chlorinated organics
    • R. C. K. Lai, I. M. C. Lo, V. Birkelund, and P. Kjeldsen, “Field monitoring of a permeable reactive barrier for removal of chlorinated organics,” J. Environ. Eng 132, 199–210 (2006).
    • (2006) J. Environ. Eng , vol.132 , pp. 199-210
    • Lai, R.C.K.1    Lo, I.M.C.2    Birkelund, V.3    Kjeldsen, P.4
  • 38
    • 0035668533 scopus 로고    scopus 로고
    • Efficient dechlorination of tetrachloethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. strain Y-51 and zero-valent iron
    • T. Lee, T. Tokunaga, A. Suyama, and K. Furukawa, “Efficient dechlorination of tetrachloethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. strain Y-51 and zero-valent iron,” J. Biosci. Bioeng. 92, 453–458 (2001).
    • (2001) J. Biosci. Bioeng. , vol.92 , pp. 453-458
    • Lee, T.1    Tokunaga, T.2    Suyama, A.3    Furukawa, K.4
  • 39
    • 0036882669 scopus 로고    scopus 로고
    • Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite
    • W. Lee and B. Batchelor, “Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite,” Environ. Sci. Technol. 36, 5147–5154 (2002).
    • (2002) Environ. Sci. Technol. , vol.36 , pp. 5147-5154
    • Lee, W.1    Batchelor, B.2
  • 40
    • 0037114049 scopus 로고    scopus 로고
    • Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust
    • W. Lee and B. Batchelor, “Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust,” Environ. Sci. Technol. 36, 5348–5354 (2002).
    • (2002) Environ. Sci. Technol. , vol.36 , pp. 5348-5354
    • Lee, W.1    Batchelor, B.2
  • 41
    • 0037289738 scopus 로고    scopus 로고
    • Reductive capacity of natural reductants
    • W. Lee and B. Batchelor, “Reductive capacity of natural reductants,” Environ. Sci. Technol. 37, 535–541 (2003).
    • (2003) Environ. Sci. Technol. , vol.37 , pp. 535-541
    • Lee, W.1    Batchelor, B.2
  • 42
    • 0031401049 scopus 로고    scopus 로고
    • Factors influencing the stability and properties of green rusts
    • D. G. Lewis, “Factors influencing the stability and properties of green rusts,” Adv. GeoEcol. Reiskirhen 30, 345–372 (1997).
    • (1997) Adv. GeoEcol. Reiskirhen , vol.30 , pp. 345-372
    • Lewis, D.G.1
  • 43
    • 77952849379 scopus 로고    scopus 로고
    • Interactively interfacial reaction of ironreducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds
    • X. M. Li, Y. T. Li, F. B. Li, S. G. Zhou, C. H. Feng, T. X. Liu, “Interactively interfacial reaction of ironreducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds,” Chinese Sci. Bull 54, 2800–2804 (2009).
    • (2009) Chinese Sci. Bull , vol.54 , pp. 2800-2804
    • Li, X.M.1    Li, Y.T.2    Li, F.B.3    Zhou, S.G.4    Feng, C.H.5    Liu, T.X.6
  • 44
    • 35348898542 scopus 로고    scopus 로고
    • Distinguishing abiotic and biotic transformation of tetrachloroethylene and trichloroethylene by stable carbon isotope fractionation
    • X. Liang, Y. Dong, T. Kuder, L. R. Krumholz, R. P. Philp, E. C. Butler, “Distinguishing abiotic and biotic transformation of tetrachloroethylene and trichloroethylene by stable carbon isotope fractionation,” Environ. Sci. Technol. 41, 7094–7100 (2007).
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 7094-7100
    • Liang, X.1    Dong, Y.2    Kuder, T.3    Krumholz, L.R.4    Philp, R.P.5    Butler, E.C.6
  • 45
    • 33845962905 scopus 로고    scopus 로고
    • Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles
    • H.-L. Lien, Y.-S. Jhuo, and L.-H. Chen, “Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles,” Environ. Eng. Sci 24, 21–30 (2007).
    • (2007) Environ. Eng. Sci , vol.24 , pp. 21-30
    • Lien, H.-L.1    Jhuo, Y.-S.2    Chen, L.-H.3
  • 46
    • 33749387021 scopus 로고    scopus 로고
    • Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination
    • Y. Liu and G. Lowry, “Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination,” Environ. Sci. Technol. 40, 6085–6090 (2006).
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 6085-6090
    • Liu, Y.1    Lowry, G.2
  • 47
    • 0024258796 scopus 로고
    • Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments
    • D. R. Lovley and S. Goodwin, “Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments,” Geochim. Cosmochim. Acta 52, 2993–3003 (1988).
    • (1988) Geochim. Cosmochim. Acta , vol.52 , pp. 2993-3003
    • Lovley, D.R.1    Goodwin, S.2
  • 48
    • 0025922135 scopus 로고
    • Enzymatic Versus Nonenzymatic Mechanisms for Fe(III) Reduction in Aquatic Sediments
    • D. R. Lovley, E. J. P. Phillips, and D. J. Lonegran, “Enzymatic Versus Nonenzymatic Mechanisms for Fe(III) Reduction in Aquatic Sediments,” Environ. Sci. Technol. 25, 1062–1067 (1991).
    • (1991) Environ. Sci. Technol. , vol.25 , pp. 1062-1067
    • Lovley, D.R.1    Phillips, E.J.P.2    Lonegran, D.J.3
  • 49
    • 20044386507 scopus 로고    scopus 로고
    • Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in presence of copper(II)
    • R. A. Maithreepala and R. A. Doong, “Enhanced dechlorination of chlorinated methanes and ethenes by chloride green rust in presence of copper(II),” Environ. Sci. Technol. 39, 4082–4090 (2005).
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 4082-4090
    • Maithreepala, R.A.1    Doong, R.A.2
  • 50
    • 1242342826 scopus 로고    scopus 로고
    • Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles
    • M. L. McCormick and P. Adriaens, “Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles,” Environ. Sci. Technol. 38, 1045–1053 (2004).
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 1045-1053
    • McCormick, M.L.1    Adriaens, P.2
  • 51
    • 0036468311 scopus 로고    scopus 로고
    • Carbon tetrachloride transformation in a model ironreducing culture: relative kinetics of biotic and abiotic reactions
    • M. L. McCormick, E. J. Bouwer, and P. Adriaens, “Carbon tetrachloride transformation in a model ironreducing culture: relative kinetics of biotic and abiotic reactions,” Environ. Sci. Technol. 35, 403–410 (2001).
    • (2001) Environ. Sci. Technol. , vol.35 , pp. 403-410
    • McCormick, M.L.1    Bouwer, E.J.2    Adriaens, P.3
  • 52
    • 0037772583 scopus 로고    scopus 로고
    • Effects of Ag(I), Au(II), and Cu(II) on the reductive dechlorination of carbon tetrachloride by green rust
    • E. O’Loughlin, K. M. Kemner, and D. R. Burris, “Effects of Ag(I), Au(II), and Cu(II) on the reductive dechlorination of carbon tetrachloride by green rust,” Environ. Sci. Technol. 37, 2905–2912 (2003).
    • (2003) Environ. Sci. Technol. , vol.37 , pp. 2905-2912
    • O’Loughlin, E.1    Kemner, K.M.2    Burris, D.R.3
  • 53
    • 0346098290 scopus 로고    scopus 로고
    • Reduction of galogenated ethanes by green rust
    • E. J. O’Loughlin and D. R. Burris, “Reduction of galogenated ethanes by green rust,” Environ. Toxic. Chem. 23, 41–48 (2004).
    • (2004) Environ. Toxic. Chem. , vol.23 , pp. 41-48
    • O’Loughlin, E.J.1    Burris, D.R.2
  • 55
    • 38749116206 scopus 로고    scopus 로고
    • DNAPL distribution in the source zone: effect of soil structure and uncertainty reduction with increased sampling density
    • M. Pantaziodou and K. Liu, “DNAPL distribution in the source zone: effect of soil structure and uncertainty reduction with increased sampling density,” J. Contam. Hydrol. 96, 169–186 (2008).
    • (2008) J. Contam. Hydrol. , vol.96 , pp. 169-186
    • Pantaziodou, M.1    Liu, K.2
  • 56
    • 63049093744 scopus 로고    scopus 로고
    • Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms
    • T. Phenrat, Y. Liu, R. D. Tilton, and G. V. Lowry, “Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms,” Environ. Sci. Technol. 43, 1507–1514 (2009).
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 1507-1514
    • Phenrat, T.1    Liu, Y.2    Tilton, R.D.3    Lowry, G.V.4
  • 57
    • 0034307593 scopus 로고    scopus 로고
    • Performance evaluation of a zero-valent iron reactive barrier: mineralogical characteristics
    • D. H. Phillips, B. Gu, D. B. Watson, Y. Roh, L. Liang, S. V. Lee, “Performance evaluation of a zero-valent iron reactive barrier: mineralogical characteristics,” Environ. Sci. Technol. 34, 4169–4176 (2000).
    • (2000) Environ. Sci. Technol. , vol.34 , pp. 4169-4176
    • Phillips, D.H.1    Gu, B.2    Watson, D.B.3    Roh, Y.4    Liang, L.5    Lee, S.V.6
  • 58
    • 77952488939 scopus 로고    scopus 로고
    • Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater
    • D. H. Phillips, T. van Nooten, L. Bastiaens, M. I. Russel, K. Dickson, et al., “Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater,” Environ. Sci. Technol. 44, 3861–3869 (2010).
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 3861-3869
    • Phillips, D.H.1    van Nooten, T.2    Bastiaens, L.3    Russel, M.I.4    Dickson, K.5
  • 59
    • 0032886579 scopus 로고    scopus 로고
    • Longterm performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina
    • R. W. Puls, Dd. W. Blowes, and R. W. Gillham, “Longterm performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina,” J. Hazard. Mater. 68, 109–120 (1999).
    • (1999) J. Hazard. Mater. , vol.68 , pp. 109-120
    • Puls, R.W.1    Blowes, D.W.2    Gillham, R.W.3
  • 60
    • 20044369349 scopus 로고    scopus 로고
    • Field demonstration of DNAPL dehalogenation using emulsifield zero-valent iron
    • J. Quinn, G. Geiger, C. Clausen, K. Brooks, C. Coon, et al., “Field demonstration of DNAPL dehalogenation using emulsifield zero-valent iron,” Environ. Sci. Technol. 39, 1309–1318 (2005).
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 1309-1318
    • Quinn, J.1    Geiger, G.2    Clausen, C.3    Brooks, K.4    Coon, C.5
  • 62
    • 0025197651 scopus 로고
    • Sampling bias caused by materials used to monitor halocarbons in groundwater
    • G. W. Reynolds, J. T. Hoff, and R. W. Gillham, “Sampling bias caused by materials used to monitor halocarbons in groundwater,” Environ. Sci. Technol. 24, 135 (1990).
    • (1990) Environ. Sci. Technol. , vol.24 , pp. 135
    • Reynolds, G.W.1    Hoff, J.T.2    Gillham, R.W.3
  • 63
    • 1542316355 scopus 로고    scopus 로고
    • Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing Dehalococcoides strains
    • H. Rosenthal, L. Adrian, and M. Steiof, “Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing Dehalococcoides strains,” Chemospliere 55, 661–669 (2004).
    • (2004) Chemospliere , vol.55 , pp. 661-669
    • Rosenthal, H.1    Adrian, L.2    Steiof, M.3
  • 64
    • 0023163165 scopus 로고
    • The stabilities of gibbsite, boehmite, aluminous goethitcs and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size
    • F. Trolard and Y. Tardy, “The stabilities of gibbsite, boehmite, aluminous goethitcs and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size,” Geochim. Cosmochim. Acta 51, 945–957 (1987).
    • (1987) Geochim. Cosmochim. Acta , vol.51 , pp. 945-957
    • Trolard, F.1    Tardy, Y.2
  • 65
    • 0032599845 scopus 로고    scopus 로고
    • Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater
    • J. L. Vogan, R. M. Focht, D. K. Clark, and S. L. Graham, “Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater,” J. Hazard. Materials 68, 97–108 (1999).
    • (1999) J. Hazard. Materials , vol.68 , pp. 97-108
    • Vogan, J.L.1    Focht, R.M.2    Clark, D.K.3    Graham, S.L.4
  • 66
    • 27744609264 scopus 로고    scopus 로고
    • Assessment of pesticide residues in two arable soils from the semi-arid and subtropical regions of China
    • L. G. Wang, Z. H. Zhao, X. Jiang, et al., “Assessment of pesticide residues in two arable soils from the semi-arid and subtropical regions of China,” Environ. Monit. Assess 109, 317–328 (2005).
    • (2005) Environ. Monit. Assess , vol.109 , pp. 317-328
    • Wang, L.G.1    Zhao, Z.H.2    Jiang, X.3
  • 67
    • 51349166558 scopus 로고    scopus 로고
    • Reductive dechlorination of trichloroethylene by combining autotrophic hydrogen-bacteria and zero-valent iron particles
    • S.-M. Wang and S.-K. Tseng, “Reductive dechlorination of trichloroethylene by combining autotrophic hydrogen-bacteria and zero-valent iron particles,” Biores. Techol 100, 111–117 (2009).
    • (2009) Biores. Techol , vol.100 , pp. 111-117
    • Wang, S.-M.1    Tseng, S.-K.2
  • 68
    • 36748999310 scopus 로고    scopus 로고
    • The first commercial permeable reactive barrier composed of granular iron: hydraulic and chemical performance at 10 years of operation
    • S. D. Warner, B. L. Longino, M. Zhang, P. Bennett, F. S. Szerdy, L. A. Hamilton, “The first commercial permeable reactive barrier composed of granular iron: hydraulic and chemical performance at 10 years of operation,” in Permeable Reactive Barriers Proc. Int. Symp. Belfast, North. Ireland, March, 2004.
    • (2004) Permeable Reactive Barriers
    • Warner, S.D.1    Longino, B.L.2    Zhang, M.3    Bennett, P.4    Szerdy, F.S.5    Hamilton, L.A.6
  • 69
    • 0031044465 scopus 로고    scopus 로고
    • utilization of cathodic hydrogen as electron donor for chloro-form cometabolism by mixed, methanogenic Culture
    • L. J. Weathers, G. F. Parkin, and P. J. Alvarez, “utilization of cathodic hydrogen as electron donor for chloro-form cometabolism by mixed, methanogenic Culture,” Environ. Sci. Technol. 31, 880–885 (1997).
    • (1997) Environ. Sci. Technol. , vol.31 , pp. 880-885
    • Weathers, L.J.1    Parkin, G.F.2    Alvarez, P.J.3
  • 70
    • 0035219505 scopus 로고    scopus 로고
    • Pyrite assisted degradation of trichloroethene (TCE)
    • R. Weerasoorija and B. Dharmasena, “Pyrite assisted degradation of trichloroethene (TCE),” Chemosphere 42, 389–396 (2001).
    • (2001) Chemosphere , vol.42 , pp. 389-396
    • Weerasoorija, R.1    Dharmasena, B.2
  • 71
    • 0142152362 scopus 로고    scopus 로고
    • Long-term performance of permeable reactive barriers using zerovalent iron: geochemistry and microbiological effects
    • R. T. Wilkin, R. W. Puis, and G. W. Sewell, “Long-term performance of permeable reactive barriers using zerovalent iron: geochemistry and microbiological effects,” Ground Water 41, 493–503 (2003).
    • (2003) Ground Water , vol.41 , pp. 493-503
    • Wilkin, R.T.1    Puis, R.W.2    Sewell, G.W.3
  • 72
    • 0342710338 scopus 로고    scopus 로고
    • Metabolic adaptation and in situ attenuation of chlorinated athenes by naturally occurring microorganism in a fractured dolomite aquifer near Niagara Falls
    • R. M. Yager, S. E. Bilotta, C. L. Mann, and E. L. Madsen, “Metabolic adaptation and in situ attenuation of chlorinated athenes by naturally occurring microorganism in a fractured dolomite aquifer near Niagara Falls,” Environ. Sci. Technol. 31, 3138–3147 (1997).
    • (1997) Environ. Sci. Technol. , vol.31 , pp. 3138-3147
    • Yager, R.M.1    Bilotta, S.E.2    Mann, C.L.3    Madsen, E.L.4
  • 73
    • 0034096511 scopus 로고    scopus 로고
    • contaminated site remedial investigation and feasibility removal of chlorinated volatile organic compounds from groundwater by activated carbon fiber adsorption
    • J.-J. Yu and S.-Y. Chou, “contaminated site remedial investigation and feasibility removal of chlorinated volatile organic compounds from groundwater by activated carbon fiber adsorption,” Chemosphere 41, 371–378 (2000).
    • (2000) Chemosphere , vol.41 , pp. 371-378
    • Yu, J.-J.1    Chou, S.-Y.2
  • 74
    • 0002695807 scopus 로고
    • Geochemistry and biogeochemistry of anaerobic habitats
    • Zehnder A J B, (ed), J. Wiley & Sons, NY:
    • A. J. B. Zehnder and W. Stumm, “Geochemistry and biogeochemistry of anaerobic habitats,” in Biology of Anaerobic Microorganisms, Ed. by A. J. B. Zehnder (J. Wiley & Sons, NY, 1988), pp. 1–3.
    • (1988) Biology of Anaerobic Microorganisms , pp. 1-3
    • Zehnder, A.J.B.1    Stumm, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.