-
1
-
-
15944400709
-
Automated computer-assisted categorization of radiology reports
-
Thomas BJ, Ouellette H, Halpern EF, et al. Automated computer-assisted categorization of radiology reports. AJR Am J Roentgenol 2005;184:687-90.
-
(2005)
AJR Am J Roentgenol
, vol.184
, pp. 687-690
-
-
Thomas, B.J.1
Ouellette, H.2
Halpern, E.F.3
-
2
-
-
12344287992
-
Application of recently developed computer algorithm for automatic classification of unstructured radiology reports: validation study
-
Dreyer KJ, Kalra MK, Maher MM, et al. Application of recently developed computer algorithm for automatic classification of unstructured radiology reports: validation study. Radiology 2005;234:323-9.
-
(2005)
Radiology
, vol.234
, pp. 323-329
-
-
Dreyer, K.J.1
Kalra, M.K.2
Maher, M.M.3
-
3
-
-
35648989562
-
Collection of cancer stage data by classifying free-text medical reports
-
McCowan IA, Moore DC. Collection of cancer stage data by classifying free-text medical reports. J Am Med Inform Assoc 2007;17:736-45.
-
(2007)
J Am Med Inform Assoc
, vol.17
, pp. 736-745
-
-
McCowan, I.A.1
Moore, D.C.2
-
4
-
-
77952241648
-
Discerning tumor status from unstructured mri reports: completeness of information in existing reports and utility of automated natural language processing
-
Cheng L, Zheng J, Savova G, et al. Discerning tumor status from unstructured mri reports: completeness of information in existing reports and utility of automated natural language processing. J Digit Imaging 2010;23:119-32.
-
(2010)
J Digit Imaging
, vol.23
, pp. 119-132
-
-
Cheng, L.1
Zheng, J.2
Savova, G.3
-
5
-
-
68949137209
-
Active learning literature survey
-
University of Wisconsin-Madison
-
Settles B. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 2009.
-
(2009)
Computer Sciences Technical Report 1648
-
-
Settles, B.1
-
7
-
-
21844444960
-
Online choice of active learning algorithms
-
Baram Y, El-Yaniv R, Luz K. Online choice of active learning algorithms. J Mach Learn Res 2004;5:255-91.
-
(2004)
J Mach Learn Res
, vol.5
, pp. 255-291
-
-
Baram, Y.1
El-Yaniv, R.2
Luz, K.3
-
10
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Tong S, Koller D. Support vector machine active learning with applications to text classification. J Mach Learn Res 2002;2:45-66.
-
(2002)
J Mach Learn Res
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
12
-
-
0442319140
-
Toward optimal active learning through sampling estimation of error reduction
-
San Francisco, CA, USA
-
Roy N, McCallum A. Toward optimal active learning through sampling estimation of error reduction. Proceedings of the Eighteenth International Conference on Machine Learning, ICML '01. San Francisco, CA, USA, 2001:441-8.
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning, ICML '01
, pp. 441-448
-
-
Roy, N.1
McCallum, A.2
-
13
-
-
0022064511
-
A best possible heuristic for the k-center problem
-
Hochbaum DS, Shmoys DB. A best possible heuristic for the k-center problem. Math Operations Res 1985;10:180-4.
-
(1985)
Math Operations Res
, vol.10
, pp. 180-184
-
-
Hochbaum, D.S.1
Shmoys, D.B.2
-
14
-
-
84891645802
-
Applying active learning to supervised word sense disambiguation in MEDLINE
-
Chen Y, Cao H, Mei M, et al. Applying active learning to supervised word sense disambiguation in MEDLINE. J Am Med Inform Assoc 2013;20:1001-6.
-
(2013)
J Am Med Inform Assoc
, vol.20
, pp. 1001-1006
-
-
Chen, Y.1
Cao, H.2
Mei, M.3
-
15
-
-
84888200992
-
Applying active learning to high-throughput phenotyping algorithms for electronic health records data
-
Chen Y, Carroll RJ, Hinz ERM, et al. Applying active learning to high-throughput phenotyping algorithms for electronic health records data. J Am Med Inform Assoc 2013;20:253-9.
-
(2013)
J Am Med Inform Assoc
, vol.20
, pp. 253-259
-
-
Chen, Y.1
Carroll, R.J.2
Hinz, E.R.M.3
-
16
-
-
84872236807
-
Active learning for clinical text classification: is it better than random sampling?
-
Figueroa RL, Zeng-Treitler Q, Ngo LH, et al. Active learning for clinical text classification: is it better than random sampling? J Am Med Inform Assoc 2012;19:809-16.
-
(2012)
J Am Med Inform Assoc
, vol.19
, pp. 809-816
-
-
Figueroa, R.L.1
Zeng-Treitler, Q.2
Ngo, L.H.3
-
17
-
-
45849122150
-
Optimal training sets for Bayesian prediction of MeSH® assignment
-
Sohn S, Kim W, Comeau DC, et al. Optimal training sets for Bayesian prediction of MeSH® assignment. J Am Med Inform Assoc 2008;15:546-53.
-
(2008)
J Am Med Inform Assoc
, vol.15
, pp. 546-553
-
-
Sohn, S.1
Kim, W.2
Comeau, D.C.3
-
19
-
-
0142192295
-
Conditional random fields: probabilistic models for segmenting and labeling sequence data
-
San Francisco, CA, USA
-
Lafferty JD, McCallum A, Pereira FCN. Conditional random fields: probabilistic models for segmenting and labeling sequence data. Proceedings of the Eighteenth International Conference on Machine Learning, ICML '01. San Francisco, CA, USA, 2001:282-9.
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning, ICML '01
, pp. 282-289
-
-
Lafferty, J.D.1
McCallum, A.2
Pereira, F.C.N.3
-
20
-
-
84957069814
-
Text categorization with support vector machines: learning with many relevant features
-
Joachims T. Text categorization with support vector machines: learning with many relevant features. Machine learning: ECML-98. 1998:137-42.
-
(1998)
Machine learning: ECML-98
, pp. 137-142
-
-
Joachims, T.1
-
21
-
-
84906306141
-
-
Unified Medical Language System (UMLS). U.S National Library of Medicine, National Institutes of Health, (accessed Mar 2013).
-
Unified Medical Language System (UMLS). U.S National Library of Medicine, National Institutes of Health. http://www.nlm.nih.gov/research/umls/ (accessed Mar 2013).
-
-
-
-
22
-
-
84906306129
-
-
Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT). (accessed March 2013).
-
Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT). http://www.ihtsdo.org/snomed-ct/ (accessed March 2013).
-
-
-
-
23
-
-
84906306121
-
-
CRF++. Yet another CRF toolkit. Software available at: (accessed Mar 2013).
-
CRF++. Yet another CRF toolkit. Software available at: http://crfpp.sourceforge.net/ (accessed Mar 2013).
-
-
-
-
24
-
-
4944228528
-
A practical guide to support vector classification
-
Department of Computer Science and Information Engineering, National Taiwan University 2003-2010.
-
Hsu CC, Chang CW, Lin CJ. A practical guide to support vector classification. Technical report, Department of Computer Science and Information Engineering, National Taiwan University 2003-2010.
-
Technical report
-
-
Hsu, C.C.1
Chang, C.W.2
Lin, C.J.3
-
25
-
-
50949133669
-
Liblinear: a library for large linear classification
-
Fan RE, Chang KW, Hsieh CJ, et al. Liblinear: a library for large linear classification. J Mach Learn Res 2008;9:1871-4.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 1871-1874
-
-
Fan, R.E.1
Chang, K.W.2
Hsieh, C.J.3
-
26
-
-
84871379352
-
Reverse active learning for optimising information extraction training production
-
In: Michael Thielscher, Dongmo Zhang, eds. Springer Berlin Heidelberg
-
Nguyen D, Patrick J. Reverse active learning for optimising information extraction training production. In: Michael Thielscher, Dongmo Zhang, eds. AI 2012: advances in artificial intelligence. Springer Berlin Heidelberg, 2012:445-56.
-
(2012)
AI 2012: advances in artificial intelligence
, pp. 445-456
-
-
Nguyen, D.1
Patrick, J.2
-
27
-
-
7444256214
-
Using cluster-based sampling to select initial training set for active learning in text classification
-
In: Honghua Dai, Ramakrishnan Srikant, Chengqi Zhang, eds. Springer Berlin Heidelberg
-
Kang J, Ryu KR, Kwon HC. Using cluster-based sampling to select initial training set for active learning in text classification. In: Honghua Dai, Ramakrishnan Srikant, Chengqi Zhang, eds. Advances in knowledge discovery and data mining. Springer Berlin Heidelberg, 2004:384-8.
-
(2004)
Advances in knowledge discovery and data mining
, pp. 384-388
-
-
Kang, J.1
Ryu, K.R.2
Kwon, H.C.3
|