메뉴 건너뛰기




Volumn 120, Issue , 2014, Pages 125-132

An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks

Author keywords

Artificial Neural Network (ANN); Building energy indicators check: neural energy performance index (N.E.P.I); Building energy performance

Indexed keywords

BUILDINGS; COMPLIANCE CONTROL; ENERGY UTILIZATION; NEURAL NETWORKS; REGULATORY COMPLIANCE; TOOLS;

EID: 84894040890     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2014.01.053     Document Type: Article
Times cited : (82)

References (28)
  • 1
    • 84894104818 scopus 로고    scopus 로고
    • EPBD - Energy Performance of Buildings Directive 2002/91/EC of the European Parliament and of the Council on the energy performance of buildings. 16.12.02.
    • EPBD - Energy Performance of Buildings Directive 2002/91/EC of the European Parliament and of the Council on the energy performance of buildings. 16.12.02.
  • 5
    • 84894042635 scopus 로고    scopus 로고
    • Energy Performance of buildings: Determination of thermal energy demand of the building for air conditioning in summer and winter
    • UNI TS 11300-1
    • UNI TS 11300-1. Energy Performance of buildings: Determination of thermal energy demand of the building for air conditioning in summer and winter; 2008.
    • (2008)
  • 6
    • 84894086283 scopus 로고    scopus 로고
    • Energy performance of buildings: determination of the primary energy demand and yields for winter heating and the production of domestic hot water
    • UNI TS 11300-2
    • UNI TS 11300-2. Energy performance of buildings: determination of the primary energy demand and yields for winter heating and the production of domestic hot water; 2008.
    • (2008)
  • 7
    • 85021184611 scopus 로고
    • Regulations for the design, installation, operation and maintenance of heating systems in buildings in order to reduce consumption of energy
    • D.P.R. 26th August 1993, n. 412, [in Italian].
    • D.P.R. 26th August 1993, n. 412. Regulations for the design, installation, operation and maintenance of heating systems in buildings in order to reduce consumption of energy; 1993. [in Italian].
    • (1993)
  • 8
    • 0029512472 scopus 로고
    • Forecasting electric energy consumption using neural networks
    • Javeed Nizami S.S.A.K., Al-Garni A. Forecasting electric energy consumption using neural networks. Butterworth Heinemann 1995, 23:1097-1104.
    • (1995) Butterworth Heinemann , vol.23 , pp. 1097-1104
    • Javeed Nizami, S.S.A.K.1    Al-Garni, A.2
  • 9
    • 0036469966 scopus 로고    scopus 로고
    • Modeling of appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks
    • Aydinalp M., Ugursal V.I., Fung A.S. Modeling of appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks. Appl Energy 2002, 71:87-110.
    • (2002) Appl Energy , vol.71 , pp. 87-110
    • Aydinalp, M.1    Ugursal, V.I.2    Fung, A.S.3
  • 10
    • 2642538304 scopus 로고    scopus 로고
    • Modeling of the space and domestic hot-water heating energy consumption in the residential sector using neural networks
    • Aydinalp M., Ugursal V.I., Fung A.S. Modeling of the space and domestic hot-water heating energy consumption in the residential sector using neural networks. Appl Energy 2004, 79:159-178.
    • (2004) Appl Energy , vol.79 , pp. 159-178
    • Aydinalp, M.1    Ugursal, V.I.2    Fung, A.S.3
  • 11
    • 34250170125 scopus 로고    scopus 로고
    • Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks
    • Tso G.K.F., Yau K.K.W. Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks. Energy 2007, 32:1761-1768.
    • (2007) Energy , vol.32 , pp. 1761-1768
    • Tso, G.K.F.1    Yau, K.K.W.2
  • 12
    • 56349138129 scopus 로고    scopus 로고
    • Prediction of energy demands using neural network with model identification by global optimization
    • Yokoyama R., Wakui T., Satake R. Prediction of energy demands using neural network with model identification by global optimization. Energy Convers Manage 2009, 50:319-327.
    • (2009) Energy Convers Manage , vol.50 , pp. 319-327
    • Yokoyama, R.1    Wakui, T.2    Satake, R.3
  • 13
    • 70349451444 scopus 로고    scopus 로고
    • Quantitative assessment of energy conservation due to public awareness campaigns using neural networks
    • Mahmoud M.A., Alajimi A.F. Quantitative assessment of energy conservation due to public awareness campaigns using neural networks. Appl Energy 2010, 87:220-228.
    • (2010) Appl Energy , vol.87 , pp. 220-228
    • Mahmoud, M.A.1    Alajimi, A.F.2
  • 14
    • 84872160615 scopus 로고    scopus 로고
    • Wooden windows: sound insulation evaluation by means of Artificial Neural Networks
    • Buratti C., Barelli L., Moretti E. Wooden windows: sound insulation evaluation by means of Artificial Neural Networks. Appl Acoust 2013, 74:740-745.
    • (2013) Appl Acoust , vol.74 , pp. 740-745
    • Buratti, C.1    Barelli, L.2    Moretti, E.3
  • 15
    • 84862183832 scopus 로고    scopus 로고
    • Application of artificial neural network to predict thermal transmittance of wooden windows
    • Buratti C., Barelli L., Moretti E. Application of artificial neural network to predict thermal transmittance of wooden windows. Appl Energy 2012, 98:425-432.
    • (2012) Appl Energy , vol.98 , pp. 425-432
    • Buratti, C.1    Barelli, L.2    Moretti, E.3
  • 16
    • 84870183894 scopus 로고    scopus 로고
    • Development of ANN model for geothermal district heating system and a novel PID-based control strategy
    • Yabanova I., Keçebaş A. Development of ANN model for geothermal district heating system and a novel PID-based control strategy. Appl Thermal Eng 2013, 51:908-916.
    • (2013) Appl Thermal Eng , vol.51 , pp. 908-916
    • Yabanova, I.1    Keçebaş, A.2
  • 17
    • 34248182908 scopus 로고    scopus 로고
    • Application of Artificial Neural Network (ANN) in order to predict the surface free energy of powders using the capillary rise method
    • Ahadiana S., Moradiana S., Sharifa F., Tehranb M.A., Mohsenia M. Application of Artificial Neural Network (ANN) in order to predict the surface free energy of powders using the capillary rise method. Colloids Surf A: Physicochemical Eng Aspects 2007, 302:280-285.
    • (2007) Colloids Surf A: Physicochemical Eng Aspects , vol.302 , pp. 280-285
    • Ahadiana, S.1    Moradiana, S.2    Sharifa, F.3    Tehranb, M.A.4    Mohsenia, M.5
  • 18
    • 84858386389 scopus 로고    scopus 로고
    • Historical weather data supported hybrid renewable energy forecasting using Artificial Neural Network (ANN)
    • Hossain R., Than Ooa A.M., Shawkat Alia A.B.M. Historical weather data supported hybrid renewable energy forecasting using Artificial Neural Network (ANN). Energy Procedia 2012, 14:1035-1040.
    • (2012) Energy Procedia , vol.14 , pp. 1035-1040
    • Hossain, R.1    Than Ooa, A.M.2    Shawkat Alia, A.B.M.3
  • 19
    • 33746976184 scopus 로고    scopus 로고
    • Use of Artificial Neural Networks for transport energy demand modeling
    • Murat Y.S., Ceylan H. Use of Artificial Neural Networks for transport energy demand modeling. Energy Policy 2006, 34:3165-3172.
    • (2006) Energy Policy , vol.34 , pp. 3165-3172
    • Murat, Y.S.1    Ceylan, H.2
  • 20
    • 37449014103 scopus 로고    scopus 로고
    • Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector
    • Aydinalp M., Ugursalb V.I. Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector. Appl Energy 2008, 271-296.
    • (2008) Appl Energy , pp. 271-296
    • Aydinalp, M.1    Ugursalb, V.I.2
  • 21
    • 78651425187 scopus 로고    scopus 로고
    • Occupant related household energy consumption in Canada: estimation using a bottom-up neural-network technique
    • Swan L.G., Ugursal V.I., Beausoleil-Morrison I. Occupant related household energy consumption in Canada: estimation using a bottom-up neural-network technique. Energy Build 2011, 326-337.
    • (2011) Energy Build , pp. 326-337
    • Swan, L.G.1    Ugursal, V.I.2    Beausoleil-Morrison, I.3
  • 22
    • 79961029951 scopus 로고    scopus 로고
    • Determination and modelling of energy consumption in wheat production using neural networks: "a case study in Canterbury province, New Zealand"
    • Safa M., Samarasinghe S. Determination and modelling of energy consumption in wheat production using neural networks: "a case study in Canterbury province, New Zealand". Energy 2011, 5140-5147.
    • (2011) Energy , pp. 5140-5147
    • Safa, M.1    Samarasinghe, S.2
  • 23
    • 84876346648 scopus 로고    scopus 로고
    • Modeling of the energy demand of the residential sector in the United States using regression models and Artificial Neural Networks
    • Kialashaki A., Reisel J.R. Modeling of the energy demand of the residential sector in the United States using regression models and Artificial Neural Networks. Appl Energy 2013, 271-280.
    • (2013) Appl Energy , pp. 271-280
    • Kialashaki, A.1    Reisel, J.R.2
  • 24
    • 84874919995 scopus 로고    scopus 로고
    • Using artificial neural networks to predict the impact of daylighting on building final electric energy requirements
    • Walger da Fonseca R., Didoné E.L., Ruttkay Pereira F.O. Using artificial neural networks to predict the impact of daylighting on building final electric energy requirements. Energy Build 2013, 31-38.
    • (2013) Energy Build , pp. 31-38
    • Walger da Fonseca, R.1    Didoné, E.L.2    Ruttkay Pereira, F.O.3
  • 28
    • 84946211810 scopus 로고    scopus 로고
    • Energy performance of buildings: renewable energy and other systems for space heating and domestic hot water production
    • UNI TS 11300-4
    • UNI TS 11300-4. Energy performance of buildings: renewable energy and other systems for space heating and domestic hot water production; 2012.
    • (2012)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.