-
1
-
-
67649225738
-
Graphene: Status and prospects
-
Geim, A. K. Graphene: status and prospects. Science 324, 1530-1534 (2009).
-
(2009)
Science
, vol.324
, pp. 1530-1534
-
-
Geim A., .K.1
-
2
-
-
40049093097
-
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
-
DOI 10.1126/science.1150878
-
Li, X. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229-1232 (2008). (Pubitemid 351323015)
-
(2008)
Science
, vol.319
, Issue.5867
, pp. 1229-1232
-
-
Li, X.1
Wang, X.2
Zhang, L.3
Lee, S.4
Dai, H.5
-
3
-
-
65249185111
-
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
-
Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872-876 (2009).
-
(2009)
Nature
, vol.458
, pp. 872-876
-
-
Kosynkin, D.V.1
-
4
-
-
77955231094
-
Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes
-
Cataldo, F. et al. Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes. Carbon 48, 2596-2602 (2010).
-
(2010)
Carbon
, vol.48
, pp. 2596-2602
-
-
Cataldo, F.1
-
5
-
-
84906272785
-
Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons
-
Shinde, D. B.,Majumder, M. &Pillai, V. K. Counter-ion Dependent, Longitudinal Unzipping of Multi-Walled Carbon Nanotubes to Highly Conductive and Transparent Graphene Nanoribbons. Sci. Rep. 4, 4363 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 4363
-
-
Shinde, D.B.1
Majumder, M.2
Pillai, V.K.3
-
6
-
-
84871776139
-
Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons
-
Huang, H. et al. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Sci. Rep. 2, 983 (2012).
-
(2012)
Sci. Rep.
, vol.2
, pp. 983
-
-
Huang, H.1
-
7
-
-
84875136118
-
Spin seebeck effect and thermal colossal magnetoresistance in graphene nanoribbon heterojunction
-
Ni, Y. et al. Spin Seebeck Effect and Thermal Colossal Magnetoresistance in Graphene Nanoribbon Heterojunction. Sci. Rep. 3, 1380 (2013).
-
(2013)
Sci. Rep.
, vol.3
, pp. 1380
-
-
Ni, Y.1
-
8
-
-
79952402082
-
Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene
-
Liu, L. et al. Nanosphere Lithography for the Fabrication of Ultranarrow Graphene Nanoribbons and On-Chip Bandgap Tuning of Graphene. Adv. Mater. 23, 1246-1251 (2011).
-
(2011)
Adv. Mater.
, vol.23
, pp. 1246-1251
-
-
Liu, L.1
-
9
-
-
68649086956
-
Energy gaps in supramolecular functionalized graphene nanoribbons
-
Nduwimana, A. &Wang, X. Q. Energy gaps in supramolecular functionalized graphene nanoribbons. ACS Nano 3, 1995-1999 (2009).
-
(2009)
ACS Nano
, vol.3
, pp. 1995-1999
-
-
Nduwimana, A.1
Wang, X.Q.2
-
10
-
-
84864576576
-
Long-range interactions between substitutional nitrogen dopants in graphene: Electronic properties calculations
-
Lambin, P., Amara, H., Ducastelle, F. &Henrard, L. Long-range interactions between substitutional nitrogen dopants in graphene: electronic properties calculations. Phys. Rev. B 86, 045448 (2012).
-
(2012)
Phys. Rev. B
, vol.86
, pp. 045448
-
-
Lambin, P.1
Amara, H.2
Ducastelle, F.3
Henrard, L.4
-
11
-
-
84859770252
-
Strain effect on the electronic properties of single layer and bilayer graphene
-
Wong, J. H., Wu, B. R. &Lin, M. F. Strain effect on the electronic properties of single layer and bilayer graphene. J. Phys. Chem. C 116, 8271-8277 (2012).
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 8271-8277
-
-
Wong, J.H.1
Wu, B.R.2
Lin, M.F.3
-
12
-
-
80051521172
-
Control of thermal and electronic transport in defect-engineered graphene nanoribbons
-
Haskins, J. et al. Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 5, 3779-3787 (2011).
-
(2011)
ACS Nano
, vol.5
, pp. 3779-3787
-
-
Haskins, J.1
-
13
-
-
0001655009
-
Zero-conductance resonances due to flux states in nanographite ribbon junctions
-
Wakabayashi, K. &Sigrist, M. Zero-conductance resonances due to flux states in nanographite ribbon junctions. Phys. Rev. Lett. 84, 3390 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 3390
-
-
Wakabayashi, K.1
Sigrist, M.2
-
14
-
-
0037171217
-
Ab initio study of field emission from graphitic ribbons
-
Tada, K. &Watanabe, K. Ab initio study of field emission from graphitic ribbons. Phys. Rev. Lett. 88, 27601 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 27601
-
-
Tada, K.1
Watanabe, K.2
-
15
-
-
76749150089
-
Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature
-
Xia, F., Farmer, D. B., Lin, Y. M. &Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715-718 (2010).
-
(2010)
Nano Lett.
, vol.10
, pp. 715-718
-
-
Xia, F.1
Farmer, D.B.2
Lin, Y.M.3
Avouris, P.4
-
16
-
-
56949084696
-
Edge effect on electronic transport properties of graphene nanoribbons and presence of perfectly conducting channel
-
Wakabayashi, K., Takane, Y., Yamamoto, M. &Sigrist, M. Edge effect on electronic transport properties of graphene nanoribbons and presence of perfectly conducting channel. Carbon 47, 124-137 (2009).
-
(2009)
Carbon
, vol.47
, pp. 124-137
-
-
Wakabayashi, K.1
Takane, Y.2
Yamamoto, M.3
Sigrist, M.4
-
17
-
-
72849118063
-
Spin channels in functionalized graphene nanoribbons
-
Cantele, G., Lee, Y. S., Ninno, D. &Marzari, N. Spin channels in functionalized graphene nanoribbons. Nano Lett. 9, 3425-3429 (2009).
-
(2009)
Nano Lett
, vol.9
, pp. 3425-3429
-
-
Cantele, G.1
Lee, Y.S.2
Ninno, D.3
Marzari, N.4
-
18
-
-
84861955405
-
Curvature effects on magnetoelectronic properties of nanographene ribbons
-
Lin, C. Y., Chen, S. C., Wu, J. Y. &Lin, M. F. Curvature Effects on Magnetoelectronic Properties of Nanographene Ribbons. J. Phys. Soc. Jpn. 81, 4719 (2012).
-
(2012)
J. Phys. Soc. Jpn.
, vol.81
, pp. 4719
-
-
Lin, C.Y.1
Chen, S.C.2
Wu, J.Y.3
Lin, M.F.4
-
19
-
-
60949104104
-
The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons
-
Ritter, K. A. &Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235-242 (2009).
-
(2009)
Nat. Mater.
, vol.8
, pp. 235-242
-
-
Ritter, K.A.1
Lyding, J.W.2
-
20
-
-
33751348065
-
Energy gaps in graphene nanoribbons
-
Son, Y. W., Cohen, M. L. &Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 216803
-
-
Son, Y.W.1
Cohen, M.L.2
Louie, S.G.3
-
21
-
-
84904358992
-
Magnetic moments in graphene with vacancies
-
Chen, J. J., Wu, H. C., Yu, D. &Liao, Z. M. Magnetic moments in graphene with vacancies. Nanoscale 6, 8814 (2014).
-
(2014)
Nanoscale
, vol.6
, pp. 8814
-
-
Chen, J.J.1
Wu, H.C.2
Yu, D.3
Liao, Z.M.4
-
22
-
-
29544437003
-
Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states
-
Lee, H. et al. Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states. Phys. Rev. B 72, 174431 (2005).
-
(2005)
Phys. Rev. B
, vol.72
, pp. 174431
-
-
Lee, H.1
-
23
-
-
76749161483
-
Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels
-
El?as, A. L. et al. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett. 10, 366-372 (2009).
-
(2009)
Nano Lett.
, vol.10
, pp. 366-372
-
-
Elas, A.L.1
-
24
-
-
79961031265
-
The production of multilayer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes
-
Dhakate, S. R., Chauhan, N., Sharma, S. &Mathur, R. B. The production of multilayer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes. Carbon 49, 4170-4178 (2011).
-
(2011)
Carbon
, vol.49
, pp. 4170-4178
-
-
Dhakate, S.R.1
Chauhan, N.2
Sharma, S.3
Mathur, R.B.4
-
25
-
-
65249133533
-
Narrow graphene nanoribbons from carbon nanotubes
-
Jiao, L. et al. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877-880 (2009).
-
(2009)
Nature
, vol.458
, pp. 877-880
-
-
Jiao, L.1
-
26
-
-
77951715589
-
Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes
-
Higginbotham, A. L. et al. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4, 2059-2069 (2010).
-
(2010)
ACS Nano
, vol.4
, pp. 2059-2069
-
-
Higginbotham, A.L.1
-
27
-
-
77952289665
-
Facile synthesis of high-quality graphene nanoribbons
-
Jiao, L. et al. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5, 321-325 (2010).
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 321-325
-
-
Jiao, L.1
-
28
-
-
65249175863
-
Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes
-
Cano-Marquez, A. G. et al. Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9, 1527-1533 (2009).
-
(2009)
Nano Lett.
, vol.9
, pp. 1527-1533
-
-
Cano-Marquez, A.G.1
-
29
-
-
79951884791
-
Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor
-
Kosynkin, D. V. et al. Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor. ACS Nano 5, 968-974 (2011).
-
(2011)
ACS Nano
, vol.5
, pp. 968-974
-
-
Kosynkin, D.V.1
-
30
-
-
79551617128
-
Beryllium and boron decoration forms planar tetracoordinate carbon strips at the edge of graphene nanoribbons
-
Xiao, B., Ding, Y. H. &Sun, C. C. Beryllium and boron decoration forms planar tetracoordinate carbon strips at the edge of graphene nanoribbons. Phys. Chem. Chem. Phys. 13, 2732-2737 (2011).
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 2732-2737
-
-
Xiao, B.1
Ding, Y.H.2
Sun, C.C.3
-
31
-
-
84873943976
-
Second-hyperpolarizability (c) enhancement in metal-decorated zigzag graphene flakes and ribbons: The size effect
-
Karamanis, P. &Pouchan, C. Second-Hyperpolarizability (c) Enhancement in Metal-Decorated Zigzag Graphene Flakes and Ribbons: The Size Effect. J. Phys. Chem. C 117, 3134-3140 (2013).
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 3134-3140
-
-
Karamanis, P.1
Pouchan, C.2
-
32
-
-
45149118399
-
Zigzag graphene nanoribbons with saturated edges
-
Kudin, K. N. Zigzag graphene nanoribbons with saturated edges. ACS Nano 2, 516-522 (2008).
-
(2008)
ACS Nano
, vol.2
, pp. 516-522
-
-
Kudin K., .N.1
-
33
-
-
84880794880
-
Electronic structure of oxygen-functionalized armchair graphene nanoribbons
-
Simbeck, A. J. et al. Electronic structure of oxygen-functionalized armchair graphene nanoribbons. Phys. Rev. B 88, 035413 (2013).
-
(2013)
Phys. Rev. B
, vol.88
, pp. 035413
-
-
Simbeck, A.J.1
-
34
-
-
77951760229
-
Kinetics of diazonium functionalization of chemically converted graphene nanoribbons
-
Sinitskii, A. et al. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4, 1949-1954 (2010).
-
(2010)
ACS Nano
, vol.4
, pp. 1949-1954
-
-
Sinitskii, A.1
-
35
-
-
77952561049
-
Planar tetracoordinate carbon strips in edge decorated graphene nanoribbon
-
Wu, M., Pei, Y. &Zeng, X. C. Planar tetracoordinate carbon strips in edge decorated graphene nanoribbon. J. Am. Chem. Soc. 132, 5554-5555 (2010).
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 5554-5555
-
-
Wu, M.1
Pei, Y.2
Zeng, X.C.3
-
36
-
-
0035957725
-
Energy gaps in "Metallic" single-walled carbon nanotubes
-
DOI 10.1126/science.1058853
-
Ouyang, M., Huang, J. L., Cheung, C. L. &Lieber, C. M. Energy gaps in ''metallic'' single-walled carbon nanotubes. Science 292, 702-705 (2001). (Pubitemid 32385536)
-
(2001)
Science
, vol.292
, Issue.5517
, pp. 702-705
-
-
Ouyang, M.1
Huang, J.-L.2
Cheung, C.L.3
Lieber, C.M.4
-
37
-
-
84869423172
-
Curvature effects on electronic properties of armchair graphene nanoribbons without passivation
-
Chang, S. L., Wu, B. R., Yang, P. H. &Lin, M. F. Curvature effects on electronic properties of armchair graphene nanoribbons without passivation. Phys. Chem. Chem. Phys., 14, 16409-16414 (2012).
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 16409-16414
-
-
Chang, S.L.1
Wu, B.R.2
Yang, P.H.3
Lin, M.F.4
-
39
-
-
33745753520
-
A fast and robust algorithm for Bader decomposition of charge density
-
DOI 10.1016/j.commatsci.2005.04.010, PII S0927025605001849
-
Henkelman, G., Arnaldsson, A. &Jonsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354-360 (2006). (Pubitemid 44382438)
-
(2006)
Computational Materials Science
, vol.36
, Issue.3
, pp. 354-360
-
-
Henkelman, G.1
Arnaldsson, A.2
Jonsson, H.3
-
40
-
-
67650529505
-
Tunable ferromagnetic spin ordering in boron nitride nanotubes with topological fluorine adsorption
-
Zhang, Z. &Guo, W. Tunable ferromagnetic spin ordering in boron nitride nanotubes with topological fluorine adsorption. J. Am. Chem. Soc. 131, 6874-6879 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 6874-6879
-
-
Zhang, Z.1
Guo, W.2
-
41
-
-
0038033665
-
Single-shell carbon nanotubes of 1-nm diameter
-
Iijima, S. &Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603-605 (1993).
-
(1993)
Nature
, vol.363
, pp. 603-605
-
-
Iijima, S.1
Ichihashi, T.2
-
42
-
-
6444244907
-
Crystalline ropes of metallic carbon nanotubes
-
Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483-487 (1996). (Pubitemid 26286446)
-
(1996)
Science
, vol.273
, Issue.5274
, pp. 483-487
-
-
Thess, A.1
Lee, R.2
Nikolaev, P.3
Dai, H.4
Petit, P.5
Robert, J.6
Xu, C.7
Lee, Y.H.8
Kim, S.G.9
Rinzler, A.G.10
Colbert, D.T.11
Scuseria, G.E.12
Tomanek, D.13
Fischer, J.E.14
Smalley, R.E.15
-
43
-
-
47649131931
-
Catalytically assisted tip growth mechanism for single-wall carbon nanotubes
-
Charlier, J. C., Amara, H. &Lambin, P. Catalytically assisted tip growth mechanism for single-wall carbon nanotubes. ACS Nano 1, 202-207 (2007).
-
(2007)
ACS Nano
, vol.1
, pp. 202-207
-
-
Charlier, J.C.1
Amara, H.2
Lambin, P.3
-
44
-
-
0008872007
-
Electronic structure of collapsed c, bn, and bc3 nanotubes
-
Kim, Y. H., Sim, H. S. &Chang, K. J. Electronic structure of collapsed C, BN, and BC3 nanotubes. Curr. Appl. Phys. 1, 39-44 (2001).
-
(2001)
Curr. Appl. Phys.
, vol.1
, pp. 39-44
-
-
Kim, Y.H.1
Sim, H.S.2
Chang, K.J.3
-
45
-
-
2642660458
-
Electronic structure of atomically resolved carbon nanotubes
-
Wilder, J. W. et al. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59-62 (1998).
-
(1998)
Nature
, vol.391
, pp. 59-62
-
-
Wilder, J.W.1
-
46
-
-
0031912473
-
Atomic structure and electronic properties of single-walled carbon nanotubes
-
DOI 10.1038/34145
-
Odom, T.W., Huang, J. L., Kim, P.&Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62-64 (1998). (Pubitemid 28079213)
-
(1998)
Nature
, vol.391
, Issue.6662
, pp. 62-64
-
-
Odom, T.W.1
Huang, J.-L.2
Kim, P.3
Lieber, C.M.4
-
47
-
-
2442537377
-
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
-
Kresse, G. &Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11169
-
-
Kresse, G.1
Furthmuller, J.2
|