메뉴 건너뛰기




Volumn 50, Issue 2, 2007, Pages 184-191

Artificial neural network: Predicted vs. observed survival in patients with colonic cancer

Author keywords

Colorectal cancer; Partial Logistic Artificial Neural Network; Prediction individual cancer related survival

Indexed keywords

ADULT; AGED; ARTICLE; ARTIFICIAL NEURAL NETWORK; CANCER DIAGNOSIS; CANCER PATIENT; CANCER RISK; CANCER STAGING; CANCER SURVIVAL; COLON CANCER; CONTROLLED STUDY; DATA BASE; FEMALE; HUMAN; KAPLAN MEIER METHOD; MAJOR CLINICAL STUDY; MALE; PROGNOSIS; RANDOM SAMPLE; RELIABILITY; SURVIVAL RATE;

EID: 33846883996     PISSN: 00123706     EISSN: 15300358     Source Type: Journal    
DOI: 10.1007/s10350-006-0779-8     Document Type: Article
Times cited : (17)

References (21)
  • 2
    • 0036127092 scopus 로고    scopus 로고
    • A review of evidence of health benefit from artificial neural networks in medical intervention
    • PJ Lisboa 2002 A review of evidence of health benefit from artificial neural networks in medical intervention Neural Netw 15 11 39
    • (2002) Neural Netw , vol.15 , pp. 11-39
    • Lisboa, P.J.1
  • 3
    • 0028788276 scopus 로고
    • Application of artificial neural networks to clinical medicine
    • WG Baxt 1995 Application of artificial neural networks to clinical medicine Lancet 346 1135 1138
    • (1995) Lancet , vol.346 , pp. 1135-1138
    • Baxt, W.G.1
  • 4
    • 0030756045 scopus 로고    scopus 로고
    • Artificial neural networks in cancer research
    • RN Naguib GV Sherb 1997 Artificial neural networks in cancer research Pathobiology 65 129 139
    • (1997) Pathobiology , vol.65 , pp. 129-139
    • Naguib, R.N.1    Sherb, G.V.2
  • 5
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • E Biganzoli P Boracchi L Mariani E Marubini 1998 Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach Stat Med 17 1169 1186
    • (1998) Stat Med , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 6
    • 0038162240 scopus 로고    scopus 로고
    • A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
    • PJ Lisboa H Wong P Harris R Swindell 2003 A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer Artif Intell Med 28 1 25
    • (2003) Artif Intell Med , vol.28 , pp. 1-25
    • Lisboa, P.J.1    Wong, H.2    Harris, P.3    Swindell, R.4
  • 8
    • 0000478224 scopus 로고
    • Exploiting prior knowledge in network optimization: An illustration from medical prognosis
    • D Lowe AR Webb 1990 Exploiting prior knowledge in network optimization: an illustration from medical prognosis Network 1 299 323
    • (1990) Network , vol.1 , pp. 299-323
    • Lowe, D.1    Webb, A.R.2
  • 9
    • 0343090468 scopus 로고    scopus 로고
    • Bias reduction in skewed binary classification with Bayesian neural networks
    • PJ Lisboa A Vellido H Wong 2000 Bias reduction in skewed binary classification with Bayesian neural networks Neural Netw 13 407 410
    • (2000) Neural Netw , vol.13 , pp. 407-410
    • Lisboa, P.J.1    Vellido, A.2    Wong, H.3
  • 12
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L Breiman 1996 Bagging predictors Mach Learn 24 123 140
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 18
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • University of Freiburg, [FDM-Preprint Nr. 46].
    • Schwarzer G, Vach W, Schumacher WM. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. University of Freiburg, Statistics in Medicine 2000;19:541-61 [FDM-Preprint Nr. 46].
    • (2000) Statistics in Medicine , vol.19 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, W.M.3
  • 19
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • D Farragi R Simon 1995 A neural network model for survival data Stat Med 14 73 85
    • (1995) Stat Med , vol.14 , pp. 73-85
    • Farragi, D.1    Simon, R.2
  • 20
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • B Cheng DM Titterington 1994 Neural networks: a review from a statistical perspective Stat Sci 9 2 4
    • (1994) Stat Sci , vol.9 , pp. 2-4
    • Cheng, B.1    Titterington, D.M.2
  • 21
    • 26844479149 scopus 로고    scopus 로고
    • Artificial networks for diagnosis and survival prediction in colon cancer
    • Available at:
    • Ahmed FE. Artificial networks for diagnosis and survival prediction in colon cancer. Molecular Cancer 2005;4:29. Available at: http://www.molecular- cancer.com/content/4/1/29
    • (2005) Molecular Cancer , vol.4 , pp. 29
    • Ahmed, F.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.