-
1
-
-
64549116740
-
Equal numbers of neuronal and non-neuronal cells make the human brain an isometrically scaled-up primate brain
-
doi: 10.1002/cne.21974
-
Azevedo, F. A. C., Carvalho, L. R. B., Grinberg, L. T., Farfel, J. M., Ferretti, R. E. L., Leite, R. E. P., et al. (2009). Equal numbers of neuronal and non-neuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532-541. doi: 10.1002/cne.21974
-
(2009)
J. Comp. Neurol
, vol.513
, pp. 532-541
-
-
Azevedo, F.A.C.1
Carvalho, L.R.B.2
Grinberg, L.T.3
Farfel, J.M.4
Ferretti, R.E.L.5
Leite, R.E.P.6
-
2
-
-
84889645520
-
Validation of the isotropic fractionator: Comparison with unbiased stereology and DNA extraction for quantification of glial cells
-
doi: 10.1016/j.jneumeth.2013.11.002
-
Bahney, J., and von Bartheld, C. S. (2014). Validation of the isotropic fractionator: comparison with unbiased stereology and DNA extraction for quantification of glial cells. J. Neurosci. Meth. 222, 165-174. doi: 10.1016/j.jneumeth.2013.11.002
-
(2014)
J. Neurosci. Meth
, vol.222
, pp. 165-174
-
-
Bahney, J.1
von Bartheld, C.S.2
-
3
-
-
71849117607
-
Evolution of the cerebellar cortex: The selective expansion of prefrontal-projecting cerebellar lobules
-
doi: 10.1016/j.neuroimage.2009.10.045
-
Balsters, J. H., Cussans, E., Diedrichsen, J., Phillips, K. A., Preuss, T. M., Rilling, J. K., et al. (2010). Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage 49, 2045-2052. doi: 10.1016/j.neuroimage.2009.10.045
-
(2010)
Neuroimage
, vol.49
, pp. 2045-2052
-
-
Balsters, J.H.1
Cussans, E.2
Diedrichsen, J.3
Phillips, K.A.4
Preuss, T.M.5
Rilling, J.K.6
-
4
-
-
0034729751
-
Mosaic evolution of brain structure in mammals
-
doi: 10.1038/35016580
-
Barton, R. A., and Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature 405, 1055-1058. doi: 10.1038/35016580
-
(2000)
Nature
, vol.405
, pp. 1055-1058
-
-
Barton, R.A.1
Harvey, P.H.2
-
5
-
-
33745225049
-
Dendritic size of pyramidal neurons differs among mouse cortical regions
-
doi: 10.1093/cercor/bhj041
-
Benavides-Piccione, R., Hamzei-Sichani, F., Ballesteros-Yáñez, I., DeFelipe, J., and Yuste, R. (2006). Dendritic size of pyramidal neurons differs among mouse cortical regions. Cereb. Cortex 16, 990-1001. doi: 10.1093/cercor/bhj041
-
(2006)
Cereb. Cortex
, vol.16
, pp. 990-1001
-
-
Benavides-Piccione, R.1
Hamzei-Sichani, F.2
Ballesteros-Yáñez, I.3
DeFelipe, J.4
Yuste, R.5
-
6
-
-
84887900487
-
Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: Regional specializations and comparison to humans
-
doi: 10.1093/cercor/bhs239
-
Bianchi, S., Stimpson, C. D., Bauernfeind, A. L., Schapiro, S. J., Baze, W. B., McArthur, M. J., et al. (2012). Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans. Cereb. Cortex 23, 2429-2436. doi: 10.1093/cercor/bhs239
-
(2012)
Cereb. Cortex
, vol.23
, pp. 2429-2436
-
-
Bianchi, S.1
Stimpson, C.D.2
Bauernfeind, A.L.3
Schapiro, S.J.4
Baze, W.B.5
McArthur, M.J.6
-
7
-
-
65349177696
-
Rodent phylogeny revised: Analysis of six nuclear genes from all major rodent clades
-
doi: 10.1186/1471-2148-9-71
-
Blanga-Kanfi, S., Miranda, H., Penn, O., Pupko, T., DeBry, R. W., and Huchon, D. (2009). Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 9:71. doi: 10.1186/1471-2148-9-71
-
(2009)
BMC Evol. Biol
, vol.9
, pp. 71
-
-
Blanga-Kanfi, S.1
Miranda, H.2
Penn, O.3
Pupko, T.4
DeBry, R.W.5
Huchon, D.6
-
8
-
-
0001183626
-
New species of Batonoides (Lipotyphla, Geolabididae) from the early Eocene of Wyoming: Smallest known mammal?
-
doi: 10.2307/1383090
-
Bloch, J. I., Rose, K. D., and Gingerich, P. D. (1998). New species of Batonoides (Lipotyphla, Geolabididae) from the early Eocene of Wyoming: smallest known mammal? J. Mammal. 79, 804-827. doi: 10.2307/1383090
-
(1998)
J. Mammal
, vol.79
, pp. 804-827
-
-
Bloch, J.I.1
Rose, K.D.2
Gingerich, P.D.3
-
9
-
-
77957812475
-
Cellular scaling rules for primate spinal cords
-
doi: 10.1159/000319019
-
Burish, M. J., Peebles, J. K., Tavares, L., Baldwin, M., Kaas, J. H., and Herculano-Houzel, S. (2010). Cellular scaling rules for primate spinal cords. Brain Behav. Evol. 76, 45-59. doi: 10.1159/000319019
-
(2010)
Brain Behav. Evol
, vol.76
, pp. 45-59
-
-
Burish, M.J.1
Peebles, J.K.2
Tavares, L.3
Baldwin, M.4
Kaas, J.H.5
Herculano-Houzel, S.6
-
10
-
-
84884197181
-
A conserved pattern of differential expansion of cortical areas in simian primates
-
doi: 10.1523/JNEUROSCI.2909-13.2013
-
Chaplin, T. A., Yu, H. H., Soares, J. G. M., Gattass, R., and Rosa, M. G. P. (2013). A conserved pattern of differential expansion of cortical areas in simian primates. J. Neurosci. 33, 15120-15125. doi: 10.1523/JNEUROSCI.2909-13.2013
-
(2013)
J. Neurosci
, vol.33
, pp. 15120-15125
-
-
Chaplin, T.A.1
Yu, H.H.2
Soares, J.G.M.3
Gattass, R.4
Rosa, M.G.P.5
-
11
-
-
84922389585
-
Systematic, cross-cortex variation in neuron numbers in rodents and primates
-
doi: 10.1093/cercor/bht214. [Epub ahead of print]
-
Charvet, C. J., Cahalane, D. J., and Finlay, B. L. (2013). Systematic, cross-cortex variation in neuron numbers in rodents and primates. Cereb Cortex. doi: 10.1093/cercor/bht214. [Epub ahead of print].
-
(2013)
Cereb Cortex
-
-
Charvet, C.J.1
Cahalane, D.J.2
Finlay, B.L.3
-
12
-
-
0035837421
-
Scalable architecture in mammalian brains
-
doi: 10.1038/35075564
-
Clark, D. A., Mitra, P. P., and Wang, S. S. (2001). Scalable architecture in mammalian brains. Nature 411, 189-193. doi: 10.1038/35075564
-
(2001)
Nature
, vol.411
, pp. 189-193
-
-
Clark, D.A.1
Mitra, P.P.2
Wang, S.S.3
-
13
-
-
84879550709
-
Faster scaling of visual neurons in cortical areas relative to subcortical structures in primate brains
-
doi: 10.1007/s00429-012-0430-5
-
Collins, C. E., Leitch, D. B., Wong, P., Kaas, J. H., and Herculano-Houzel, S. (2013). Faster scaling of visual neurons in cortical areas relative to subcortical structures in primate brains. Brain Struct. Funct. 218, 805-816. doi: 10.1007/s00429-012-0430-5
-
(2013)
Brain Struct. Funct
, vol.218
, pp. 805-816
-
-
Collins, C.E.1
Leitch, D.B.2
Wong, P.3
Kaas, J.H.4
Herculano-Houzel, S.5
-
14
-
-
84989992541
-
Brain and body weight in man: Their antecedents in growth and evolution
-
doi: 10.1111/j.1749-6632.1947.tb36165.x
-
Count, E. W. (1947). Brain and body weight in man: their antecedents in growth and evolution. Ann. N.Y. Acad. Sci. 46, 993-1122. doi: 10.1111/j.1749-6632.1947.tb36165.x
-
(1947)
Ann. N.Y. Acad. Sci
, vol.46
, pp. 993-1122
-
-
Count, E.W.1
-
15
-
-
0036402765
-
Molecular phylogenetic evidence confirming the Eulipotyphla concept and in support of hedgehogs as the sister group to shrews
-
doi: 10.1016/S1055-7903(02)00232-4
-
Douady, C. J., Chatelier, C. I., Madsen, O., de Jong, W. W., Catzeflis, F., Springer, M. S., et al. (2002). Molecular phylogenetic evidence confirming the Eulipotyphla concept and in support of hedgehogs as the sister group to shrews. Mol. Phylogen. Evol. 25, 200-209. doi: 10.1016/S1055-7903(02)00232-4
-
(2002)
Mol. Phylogen. Evol
, vol.25
, pp. 200-209
-
-
Douady, C.J.1
Chatelier, C.I.2
Madsen, O.3
de Jong, W.W.4
Catzeflis, F.5
Springer, M.S.6
-
16
-
-
84893711813
-
Pyramidal cells in V1 of African rodents are bigger, more branched and more spiny than those in primates
-
doi: 10.3389/fnana.2014.00004
-
Elston, G., and Manger, P. R. (2014). Pyramidal cells in V1 of African rodents are bigger, more branched and more spiny than those in primates. Front. Neuroanat. 9:4. doi: 10.3389/fnana.2014.00004
-
(2014)
Front. Neuroanat
, vol.9
, pp. 4
-
-
Elston, G.1
Manger, P.R.2
-
17
-
-
0037806376
-
Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function
-
doi: 10.1093/cercor/bhg093
-
Elston, G. N. (2003). Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb. Cortex 13, 1124-1138. doi: 10.1093/cercor/bhg093
-
(2003)
Cereb. Cortex
, vol.13
, pp. 1124-1138
-
-
Elston, G.N.1
-
18
-
-
0029057882
-
Linked regularities in the development and evolution of mammalian brains
-
doi: 10.1126/science.7777856
-
Finlay, B. L., and Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science 268, 1578-1584. doi: 10.1126/science.7777856
-
(1995)
Science
, vol.268
, pp. 1578-1584
-
-
Finlay, B.L.1
Darlington, R.B.2
-
19
-
-
84868547829
-
Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution
-
doi: 10.1073/pnas.1206390109
-
Fonseca-Azevedo, K., and Herculano-Houzel, S. (2012). Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. Proc. Natl. Acad. Sci. U.S.A. 109, 18571-18576. doi: 10.1073/pnas.1206390109
-
(2012)
Proc. Natl. Acad. Sci. U.S. A
, vol.109
, pp. 18571-18576
-
-
Fonseca-Azevedo, K.1
Herculano-Houzel, S.2
-
20
-
-
0020424189
-
Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex
-
Frahm, H. D., Stephan, H., and Stephan, M. (1982). Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. J. Hirnforsch. 23, 375-389.
-
(1982)
J. Hirnforsch
, vol.23
, pp. 375-389
-
-
Frahm, H.D.1
Stephan, H.2
Stephan, M.3
-
21
-
-
77957771109
-
Cellular scaling rules for the brains of an extended number of primate species
-
doi: 10.1159/000319872
-
Gabi, M., Collins, C. E., Wong, P., Torres, L. B., Kaas, J. H., and Herculano-Houzel, S. (2010). Cellular scaling rules for the brains of an extended number of primate species. Brain Behav. Evol. 76, 32-44. doi: 10.1159/000319872
-
(2010)
Brain Behav. Evol
, vol.76
, pp. 32-44
-
-
Gabi, M.1
Collins, C.E.2
Wong, P.3
Torres, L.B.4
Kaas, J.H.5
Herculano-Houzel, S.6
-
22
-
-
0023271966
-
Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant)
-
doi: 10.1002/aja.1001800203
-
Haug, H. (1987). Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am. J. Anat. 180, 126-142. doi: 10.1002/aja.1001800203
-
(1987)
Am. J. Anat
, vol.180
, pp. 126-142
-
-
Haug, H.1
-
23
-
-
0344457115
-
Glia/nerve cell index for the cortex of the whale
-
doi: 10.1126/science.126.3263.76
-
Hawkins, A., and Olszewski, J. (1957). Glia/nerve cell index for the cortex of the whale. Science 126, 76-77. doi: 10.1126/science.126.3263.76
-
(1957)
Science
, vol.126
, pp. 76-77
-
-
Hawkins, A.1
Olszewski, J.2
-
24
-
-
77957772502
-
Coordinated scaling of cortical and cerebellar numbers of neurons
-
doi: 10.3389/fnana.2010.00012
-
Herculano-Houzel, S. (2010). Coordinated scaling of cortical and cerebellar numbers of neurons. Front. Neuroanat. 4:12. doi: 10.3389/fnana.2010.00012
-
(2010)
Front. Neuroanat
, vol.4
, pp. 12
-
-
Herculano-Houzel, S.1
-
25
-
-
80052320652
-
Not all brains are made the same: New views on brain scaling in evolution
-
doi: 10.1159/000327318
-
Herculano-Houzel, S. (2011). Not all brains are made the same: new views on brain scaling in evolution. Brain Behav. Evol. 78, 22-36. doi: 10.1159/000327318
-
(2011)
Brain Behav. Evol
, vol.78
, pp. 22-36
-
-
Herculano-Houzel, S.1
-
26
-
-
84904353612
-
The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution
-
doi: 10.1002/glia.22683
-
Herculano-Houzel, S. (2014). The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62, 1377-1391. doi: 10.1002/glia.22683
-
(2014)
Glia
, vol.62
, pp. 1377-1391
-
-
Herculano-Houzel, S.1
-
27
-
-
33847677187
-
Cellular scaling rules for primate brains
-
doi: 10.1073/pnas.0611396104
-
Herculano-Houzel, S., Collins, C. E., Wong, P., and Kaas, J. H. (2007). Cellular scaling rules for primate brains. Proc. Natl. Acad. Sci. U.S.A. 104, 3562-3567. doi: 10.1073/pnas.0611396104
-
(2007)
Proc. Natl. Acad. Sci. U.S. A
, vol.104
, pp. 3562-3567
-
-
Herculano-Houzel, S.1
Collins, C.E.2
Wong, P.3
Kaas, J.H.4
-
28
-
-
78650505566
-
Connectivity-driven white matter scaling and folding of the primate cerebral cortex
-
doi: 10.1073/pnas.1012590107
-
Herculano-Houzel, S., Collins, C. E., Wong, P., and Kaas, J. H. (2010). Connectivity-driven white matter scaling and folding of the primate cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 107, 19008-19013. doi: 10.1073/pnas.1012590107
-
(2010)
Proc. Natl. Acad. Sci. U.S. A
, vol.107
, pp. 19008-19013
-
-
Herculano-Houzel, S.1
Collins, C.E.2
Wong, P.3
Kaas, J.H.4
-
29
-
-
14944342993
-
Isotropic fractionator: A simple, rapid method for the quantification of total cell and neuron numbers in the brain
-
doi: 10.1523/JNEUROSCI.4526-04.2005
-
Herculano-Houzel, S., and Lent, R. (2005). Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518-2521. doi: 10.1523/JNEUROSCI.4526-04.2005
-
(2005)
J. Neurosci
, vol.25
, pp. 2518-2521
-
-
Herculano-Houzel, S.1
Lent, R.2
-
30
-
-
33747046064
-
Cellular scaling rules for rodent brains
-
doi: 10.1073/pnas.0604911103
-
Herculano-Houzel, S., Mota, B., and Lent, R. (2006). Cellular scaling rules for rodent brains. Proc. Natl. Acad. Sci. U.S.A. 103, 12138-12143. doi: 10.1073/pnas.0604911103
-
(2006)
Proc. Natl. Acad. Sci. U.S. A
, vol.103
, pp. 12138-12143
-
-
Herculano-Houzel, S.1
Mota, B.2
Lent, R.3
-
31
-
-
81255137157
-
Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs)
-
doi: 10.1159/000330825
-
Herculano-Houzel, S., Ribeiro, P., Campos, L., da Silva, A. V., Torres, L. B., Catania, K. C., et al. (2011). Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain Behav. Evol. 78, 302-314. doi: 10.1159/000330825
-
(2011)
Brain Behav. Evol
, vol.78
, pp. 302-314
-
-
Herculano-Houzel, S.1
Ribeiro, P.2
Campos, L.3
da Silva, A.V.4
Torres, L.B.5
Catania, K.C.6
-
32
-
-
84887033182
-
Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones
-
doi: 10.3389/fnana.2013.00035
-
Herculano-Houzel, S., Watson, C., and Paxinos, G. (2013). Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones. Front. Neuroanat. 7:35. doi: 10.3389/fnana.2013.00035
-
(2013)
Front. Neuroanat
, vol.7
, pp. 35
-
-
Herculano-Houzel, S.1
Watson, C.2
Paxinos, G.3
-
33
-
-
0022189523
-
Size and shape of the cerebral cortex in mammals. I. The cortical surface
-
doi: 10.1159/000118718
-
Hofman, M. A. (1985). Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav. Evol. 27, 28-40. doi: 10.1159/000118718
-
(1985)
Brain Behav. Evol
, vol.27
, pp. 28-40
-
-
Hofman, M.A.1
-
34
-
-
41149173145
-
Control of mental activities by internal models in the cerebellum
-
doi: 10.1038/nrn2332
-
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9, 304-313. doi: 10.1038/nrn2332
-
(2008)
Nat. Rev. Neurosci
, vol.9
, pp. 304-313
-
-
Ito, M.1
-
35
-
-
84899135806
-
Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates
-
doi: 10.3389/fnana.2014.00024
-
Jacobs, B., Johnson, N. L., Wahl, D., Schall, M., Maseko, B. C., Lewandowski, A., et al. (2014). Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates. Front. Neuroanat. 8:24. doi: 10.3389/fnana.2014.00024
-
(2014)
Front. Neuroanat
, vol.8
, pp. 24
-
-
Jacobs, B.1
Johnson, N.L.2
Wahl, D.3
Schall, M.4
Maseko, B.C.5
Lewandowski, A.6
-
36
-
-
0035017915
-
Regional dendritic and spine variation in human cerebral cortex: A quantitative study
-
doi: 10.1093/cercor/11.6.558
-
Jacobs, B., Schall, M., Prather, M., Kapler, E., Driscoll, L., Baca, S., et al. (2001). Regional dendritic and spine variation in human cerebral cortex: a quantitative study. Cereb. Cortex 11, 558-571. doi: 10.1093/cercor/11.6.558
-
(2001)
Cereb. Cortex
, vol.11
, pp. 558-571
-
-
Jacobs, B.1
Schall, M.2
Prather, M.3
Kapler, E.4
Driscoll, L.5
Baca, S.6
-
38
-
-
34249873787
-
Global and regional brain metabolic scaling and its functional consequences
-
doi: 10.1186/1741-7007-5-18
-
Karbowski, J. (2007). Global and regional brain metabolic scaling and its functional consequences. BMC Biol. 5:18. doi: 10.1186/1741-7007-5-18
-
(2007)
BMC Biol
, vol.5
, pp. 18
-
-
Karbowski, J.1
-
39
-
-
0024387047
-
Reappraising the cerebellum: What does the hindbrain contribute to the forebrain?
-
doi: 10.1037/0735-7044.103.5.998
-
Leiner, H. C., Leiner, A. L., and Dow, R. S. (1989). Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav. Neurosci. 103, 998-1008. doi: 10.1037/0735-7044.103.5.998
-
(1989)
Behav. Neurosci
, vol.103
, pp. 998-1008
-
-
Leiner, H.C.1
Leiner, A.L.2
Dow, R.S.3
-
40
-
-
79959924122
-
Development and evolution of the human neocortex
-
doi: 10.1016/j.cell.2011.06.030
-
Lui, J. H., Hansen, D. V., and Kriegstein, A. R. (2011). Development and evolution of the human neocortex. Cell 146, 18-36. doi: 10.1016/j.cell.2011.06.030
-
(2011)
Cell
, vol.146
, pp. 18-36
-
-
Lui, J.H.1
Hansen, D.V.2
Kriegstein, A.R.3
-
41
-
-
0035947288
-
A new mammaliaform form the early Jurassic and evolution of mammalian characteristics
-
doi: 10.1126/science.1058476
-
Luo, Z.-X., Crompton, A. W., and Sun, A. L. (2001). A new mammaliaform form the early Jurassic and evolution of mammalian characteristics. Science 292, 1535-1540. doi: 10.1126/science.1058476
-
(2001)
Science
, vol.292
, pp. 1535-1540
-
-
Luo, Z.-X.1
Crompton, A.W.2
Sun, A.L.3
-
42
-
-
80052063301
-
A Jurassic eutherian mammal and divergence of marsupials and placentals
-
doi: 10.1038/nature10291
-
Luo, Z.-X., Yuan, C.-X., Meng, Q.-J., and Ji, Q. (2011). A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476, 442-445. doi: 10.1038/nature10291
-
(2011)
Nature
, vol.476
, pp. 442-445
-
-
Luo, Z.-X.1
Yuan, C.-X.2
Meng, Q.-J.3
Ji, Q.4
-
43
-
-
0035252569
-
Parallel adaptive radiations in two major clades of placental mammals
-
doi: 10.1038/35054544
-
Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., et al. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409, 610-614. doi: 10.1038/35054544
-
(2001)
Nature
, vol.409
, pp. 610-614
-
-
Madsen, O.1
Scally, M.2
Douady, C.J.3
Kao, D.J.4
DeBry, R.W.5
Adkins, R.6
-
44
-
-
84858298550
-
Elephants have relatively the largest cerebellum size of mammals
-
doi: 10.1002/ar.22425
-
Maseko, B. C., Spocter, M. A., Haagensen, M., and Manger, P. R. (2012). Elephants have relatively the largest cerebellum size of mammals. Anat. Rec. 295, 661-672. doi: 10.1002/ar.22425
-
(2012)
Anat. Rec
, vol.295
, pp. 661-672
-
-
Maseko, B.C.1
Spocter, M.A.2
Haagensen, M.3
Manger, P.R.4
-
45
-
-
84901304064
-
Three counting methods agree on cell and neuron number in chimpanzee V1
-
doi: 10.3389/fnana.2014.00036
-
Miller, D. J., Balaram, P., Young, N. A., and Kaas, J. H. (2014). Three counting methods agree on cell and neuron number in chimpanzee V1. Front. Neuroanat. 8:36. doi: 10.3389/fnana.2014.00036
-
(2014)
Front. Neuroanat
, vol.8
, pp. 36
-
-
Miller, D.J.1
Balaram, P.2
Young, N.A.3
Kaas, J.H.4
-
46
-
-
84856782618
-
How the cortex gets its folds: An inside-out, connectivity-driven model for the scaling of mammalian cortical folding
-
doi: 10.3389/fnana.2012.00003
-
Mota, B., and Herculano-Houzel, S. (2012). How the cortex gets its folds: an inside-out, connectivity-driven model for the scaling of mammalian cortical folding. Front. Neuroanat. 6:3. doi: 10.3389/fnana.2012.00003
-
(2012)
Front. Neuroanat
, vol.6
, pp. 3
-
-
Mota, B.1
Herculano-Houzel, S.2
-
47
-
-
0035252080
-
Molecular phylogenetics and the origins of placental mammals
-
doi: 10.1038/35054550
-
Murphy, W. J., Eizirik, E., Johnson, W. E., Ping Zhang, Y., Ryder, O. A., and O'Brien, S. J. (2001). Molecular phylogenetics and the origins of placental mammals. Nature 409, 614-618. doi: 10.1038/35054550
-
(2001)
Nature
, vol.409
, pp. 614-618
-
-
Murphy, W.J.1
Eizirik, E.2
Johnson, W.E.3
Ping Zhang, Y.4
Ryder, O.A.5
O'Brien, S.J.6
-
48
-
-
7444233609
-
Mammalian phylogenomics comes of age
-
doi: 10.1016/j.tig.2004.09.005
-
Murphy, W. J., Pevzner, P. A., and O'Brien, S. J. (2004). Mammalian phylogenomics comes of age. Trends Genet. 20, 631-639. doi: 10.1016/j.tig.2004.09.005
-
(2004)
Trends Genet
, vol.20
, pp. 631-639
-
-
Murphy, W.J.1
Pevzner, P.A.2
O'Brien, S.J.3
-
49
-
-
84894067414
-
Cellular scaling rules for the brain of afrotherians
-
doi: 10.3389/fnana.2014.00005
-
Neves, K., Ferreira Meireles, F., Tovar-Moll, F., Gravett, N., Bennett, N. C., Kaswera, C., et al. (2014). Cellular scaling rules for the brain of afrotherians. Front. Neuroanat. 8:5. doi: 10.3389/fnana.2014.00005
-
(2014)
Front. Neuroanat
, vol.8
, pp. 5
-
-
Neves, K.1
Ferreira Meireles, F.2
Tovar-Moll, F.3
Gravett, N.4
Bennett, N.C.5
Kaswera, C.6
-
50
-
-
84873728541
-
Postnatal development of layer III pyramidal cells in the primary visual, inferior temporal, and prefrontal cortices of the marmoset
-
doi: 10.3389/fncir.2013.00031
-
Oga, T., Aoi, H., Sasaki, T., Fujita, I., and Ichinohe, N. (2013). Postnatal development of layer III pyramidal cells in the primary visual, inferior temporal, and prefrontal cortices of the marmoset. Front. Neural Circuits 8, 7:31. doi: 10.3389/fncir.2013.00031
-
(2013)
Front. Neural Circuits
, vol.8
, Issue.7
, pp. 31
-
-
Oga, T.1
Aoi, H.2
Sasaki, T.3
Fujita, I.4
Ichinohe, N.5
-
51
-
-
0016669339
-
The brain and intelligence
-
doi: 10.1159/000123620
-
Passingham, R. E. (1975). The brain and intelligence. Brain Behav. Evol. 11, 1-15. doi: 10.1159/000123620
-
(1975)
Brain Behav. Evol
, vol.11
, pp. 1-15
-
-
Passingham, R.E.1
-
52
-
-
34249978704
-
Order-specific quantitative patterns of cortical gyrification
-
doi: 10.1111/j.1460-9568.2007.05524.x
-
Pillay, P., and Manger, P. R. (2007). Order-specific quantitative patterns of cortical gyrification. Eur. J. Neurosci. 25, 2705-2712. doi: 10.1111/j.1460-9568.2007.05524.x
-
(2007)
Eur. J. Neurosci
, vol.25
, pp. 2705-2712
-
-
Pillay, P.1
Manger, P.R.2
-
53
-
-
23144461098
-
A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla)
-
doi: 10.1017/S1464793105006743
-
Price, S. A., Bininda-Emonds, O. R. P., and Gittleman, J. L. (2005). A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biol. Rev. 80, 445-473. doi: 10.1017/S1464793105006743
-
(2005)
Biol. Rev
, vol.80
, pp. 445-473
-
-
Price, S.A.1
Bininda-Emonds, O.R.P.2
Gittleman, J.L.3
-
54
-
-
0021165764
-
Folding of the cerebral cortex in mammals. A scaling model
-
doi: 10.1159/000121313
-
Prothero, J. W., and Sundsten, J. W. (1984). Folding of the cerebral cortex in mammals. A scaling model. Brain Behav. Evol. 24, 152-167. doi: 10.1159/000121313
-
(1984)
Brain Behav. Evol
, vol.24
, pp. 152-167
-
-
Prothero, J.W.1
Sundsten, J.W.2
-
55
-
-
0029653995
-
A composite estimate of primate philogeny
-
doi: 10.1098/rstb.1995.0078
-
Purvis, A. (1995). A composite estimate of primate philogeny. Prilos. Trans. R. Soc. Lond. B 348, 405-421. doi: 10.1098/rstb.1995.0078
-
(1995)
Prilos. Trans. R. Soc. Lond. B
, vol.348
, pp. 405-421
-
-
Purvis, A.1
-
56
-
-
0029132983
-
A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution
-
doi: 10.1016/0166-2236(95)93934-P
-
Rakic, P. (1995). A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383-338. doi: 10.1016/0166-2236(95)93934-P
-
(1995)
Trends Neurosci
, vol.18
, pp. 383
-
-
Rakic, P.1
-
57
-
-
33745635032
-
The primate cortico-cerebellar system: Anatomy and function
-
doi: 10.1038/nrn1953
-
Ramnani, N. (2006). The primate cortico-cerebellar system: anatomy and function. Nat. Rev. Neurosci. 7, 511-522. doi: 10.1038/nrn1953
-
(2006)
Nat. Rev. Neurosci
, vol.7
, pp. 511-522
-
-
Ramnani, N.1
-
58
-
-
33646859688
-
The evolution of prefrontal inputs to the cortico-pontine system: Diffusion imaging evidence from macaque monkeys and humans
-
doi: 10.1093/cercor/bhj024
-
Ramnani, N., Behrens, T. E., Johansen-Berg, H., Richter, M. C., Pinsk, M. A., Andersson, J. L., et al. (2006). The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb. Cortex 16, 811-818. doi: 10.1093/cercor/bhj024
-
(2006)
Cereb. Cortex
, vol.16
, pp. 811-818
-
-
Ramnani, N.1
Behrens, T.E.2
Johansen-Berg, H.3
Richter, M.C.4
Pinsk, M.A.5
Andersson, J.L.6
-
59
-
-
84898444125
-
Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates
-
doi: 10.3389/fnana.2014.00023
-
Ribeiro, P. F. M., Manger, P. R., Catania, K. C., Kaas, J. H., and Herculano-Houzel, S. (2014). Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates. Front. Neuroanat. 8:23. doi: 10.3389/fnana.2014.00023
-
(2014)
Front. Neuroanat
, vol.8
, pp. 23
-
-
Ribeiro, P.F.M.1
Manger, P.R.2
Catania, K.C.3
Kaas, J.H.4
Herculano-Houzel, S.5
-
60
-
-
79956297634
-
Fossil evidence on origin of the mammalian brain
-
doi: 10.1126/science.1203117
-
Rowe, T. B., Macrini, T. E., and Luo, Z. X. (2011). Fossil evidence on origin of the mammalian brain. Science 332, 955-957. doi: 10.1126/science.1203117
-
(2011)
Science
, vol.332
, pp. 955-957
-
-
Rowe, T.B.1
McRini, T.E.2
Luo, Z.X.3
-
61
-
-
77957762805
-
Cellular scaling rules of insectivore brains
-
doi: 10.3389/neuro.05.008.2009
-
Sarko, D. K., Catania, K. C., Leitch, D. B., Kaas, J. H., and Herculano-Houzel, S. (2009). Cellular scaling rules of insectivore brains. Front. Neuroanat. 3:8. doi: 10.3389/neuro.05.008.2009
-
(2009)
Front. Neuroanat
, vol.3
, pp. 8
-
-
Sarko, D.K.1
Catania, K.C.2
Leitch, D.B.3
Kaas, J.H.4
Herculano-Houzel, S.5
-
62
-
-
0242584451
-
Molecular phylogenetic relationships of moles, shrew moles, and desmans from the new and old worlds
-
doi: 10.1016/S1055-7903(02)00416-5
-
Shinohara, A., Campbell, K. L., and Suzuki, H. (2003). Molecular phylogenetic relationships of moles, shrew moles, and desmans from the new and old worlds. Mol. Phylogen. Evol. 27, 247-258. doi: 10.1016/S1055-7903(02)00416-5
-
(2003)
Mol. Phylogen. Evol
, vol.27
, pp. 247-258
-
-
Shinohara, A.1
Campbell, K.L.2
Suzuki, H.3
-
63
-
-
67650445587
-
Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early primates
-
doi: 10.1073/pnas.0812140106
-
Silcox, M. T., Dalmyn, C. K., and Bloch, J. I. (2009). Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early primates. Proc. Natl. Acad. Sci. U.S.A. 106, 10987-10992. doi: 10.1073/pnas.0812140106
-
(2009)
Proc. Natl. Acad. Sci. U.S. A
, vol.106
, pp. 10987-10992
-
-
Silcox, M.T.1
Dalmyn, C.K.2
Bloch, J.I.3
-
64
-
-
84878214431
-
Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution
-
doi: 10.1098/rspb.2013.0269
-
Smaers, J. B., and Soligo, C. (2013). Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc. R. Soc. B 280:20130269. doi: 10.1098/rspb.2013.0269
-
(2013)
Proc. R. Soc. B
, vol.280
, pp. 20130269
-
-
Smaers, J.B.1
Soligo, C.2
-
65
-
-
84981851344
-
Quantitative comparative anatomy of primates: An attempt at a phylogenetic interpretation
-
doi: 10.1111/j.1749-6632.1969.tb20457.x
-
Stephan, H., and Andy, O. J. (1969). Quantitative comparative anatomy of primates: an attempt at a phylogenetic interpretation. Ann. N.Y. Acad. Sci. 167, 370-386. doi: 10.1111/j.1749-6632.1969.tb20457.x
-
(1969)
Ann. N.Y. Acad. Sci
, vol.167
, pp. 370-386
-
-
Stephan, H.1
Andy, O.J.2
-
66
-
-
77049171682
-
Structural and functional organization of mammalian cerebral cortex: The correlation of neurone density with brain size. Cortical neurone density in the fin whale (Balaenoptera physalus L.) with a note on the cortical neurone density in the Indian elephant
-
doi: 10.1002/cne.901010103
-
Tower, D. B. (1954). Structural and functional organization of mammalian cerebral cortex: the correlation of neurone density with brain size. Cortical neurone density in the fin whale (Balaenoptera physalus L.) with a note on the cortical neurone density in the Indian elephant. J. Comp. Neurol. 101, 19-52. doi: 10.1002/cne.901010103
-
(1954)
J. Comp. Neurol
, vol.101
, pp. 19-52
-
-
Tower, D.B.1
-
67
-
-
0001661037
-
Activity of the acetylcholine system in cerebral cortex of various unanesthetized animals
-
Tower, D. B., and Elliott, K. A. C. (1952). Activity of the acetylcholine system in cerebral cortex of various unanesthetized animals. Am. J. Physiol. 168, 747-759.
-
(1952)
Am. J. Physiol
, vol.168
, pp. 747-759
-
-
Tower, D.B.1
Elliott, K.A.C.2
-
68
-
-
0015838278
-
The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale
-
doi: 10.1111/j.1471-4159.1973.tb12126.x
-
Tower, D. B., and Young, O. M. (1973). The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J. Neurochem. 20, 269-278. doi: 10.1111/j.1471-4159.1973.tb12126.x
-
(1973)
J. Neurochem
, vol.20
, pp. 269-278
-
-
Tower, D.B.1
Young, O.M.2
-
69
-
-
84875489133
-
Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains
-
doi: 10.3389/fnana.2013.00003
-
Ventura-Antunes, L., Mota, B., and Herculano-Houzel, S. (2013). Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains. Front. Neuroanat. 7:3. doi: 10.3389/fnana.2013.00003
-
(2013)
Front. Neuroanat
, vol.7
, pp. 3
-
-
Ventura-Antunes, L.1
Mota, B.2
Herculano-Houzel, S.3
-
70
-
-
0002583095
-
Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci
-
in, eds E. G. Jones and A. Peters (New York; London; Plenum Press)
-
Welker, W. (1990). "Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci, " inCerebral Cortex: Vol. 8B, Comparative Structure and Evolution of Cerebral Cortex, Part II, eds E. G. Jones and A. Peters (New York; London; Plenum Press), 3-110.
-
(1990)
Cerebral Cortex: Vol. 8B, Comparative Structure and Evolution of Cerebral Cortex, Part II
, pp. 3-110
-
-
Welker, W.1
-
71
-
-
0037229735
-
The evolution of the cortico-cerebellar complex in primates: Anatomical connections predict patterns of correlated evolution
-
doi: 10.1016/S0047-2484(02)00162-8
-
Whiting, B. A., and Barton, R. A. (2003). The evolution of the cortico-cerebellar complex in primates: anatomical connections predict patterns of correlated evolution. J. Hum. Evol. 44, 3-10. doi: 10.1016/S0047-2484(02)00162-8
-
(2003)
J. Hum. Evol
, vol.44
, pp. 3-10
-
-
Whiting, B.A.1
Barton, R.A.2
|