메뉴 건너뛰기




Volumn 138, Issue , 2014, Pages 110-119

K-CM: A new artificial neural network. Application to supervised pattern recognition

Author keywords

Artificial neural networks; Auto CM; Classification; K NN; QSAR; TWIST algorithm

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; AUTOMATED PATTERN RECOGNITION; BAYESIAN LEARNING; CLASSIFICATION ALGORITHM; DECISION MAKING; FUZZY SYSTEM; INFORMATION PROCESSING; K CONTRACTIVE MAP; K NEAREST NEIGHBOR; NONLINEAR SYSTEM; PRIORITY JOURNAL; PROBLEM SOLVING; PROCESS OPTIMIZATION; SYSTEM ANALYSIS; THEORY VALIDATION; ALGORITHM; COMPUTER PROGRAM; MATHEMATICAL MODEL; PATTERN RECOGNITION; QUALITY CONTROL; REGRESSION ANALYSIS; TRAINING WITH INPUT SELECTION AND TESTING ALGORITHM;

EID: 84905689312     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.06.013     Document Type: Article
Times cited : (23)

References (42)
  • 2
    • 84905687630 scopus 로고    scopus 로고
    • Classification: basic concepts
    • Elsevier, Amsterdam (The Netherlands), S.D. Brown, R. Tauler, B. Walczak (Eds.)
    • Lavine B.K., Rayens W.S. Classification: basic concepts. Comprehensive Chemometrics 2014, Elsevier, Amsterdam (The Netherlands). S.D. Brown, R. Tauler, B. Walczak (Eds.).
    • (2014) Comprehensive Chemometrics
    • Lavine, B.K.1    Rayens, W.S.2
  • 3
    • 38949215870 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Boston (MA, USA), J.A.K. Suykens, J. Vandewalle (Eds.)
    • Vapnik V. The Support Vector Machine of Function Estimation 1998, Kluwer Academic Publishers, Boston (MA, USA). J.A.K. Suykens, J. Vandewalle (Eds.).
    • (1998) The Support Vector Machine of Function Estimation
    • Vapnik, V.1
  • 4
    • 0001757405 scopus 로고
    • The k-nearest neighbor classification rule (Pattern Recognition) applied to nuclear magnetic resonance spectral interpretation
    • Kowalski B.R., Bender C.F. The k-nearest neighbor classification rule (Pattern Recognition) applied to nuclear magnetic resonance spectral interpretation. Anal. Chem. 1972, 44:1405-1411.
    • (1972) Anal. Chem. , vol.44 , pp. 1405-1411
    • Kowalski, B.R.1    Bender, C.F.2
  • 5
    • 0016973661 scopus 로고
    • Pattern recognition by means of disjoint principal component models
    • Wold S. Pattern recognition by means of disjoint principal component models. Pattern Recogn. 1976, 8:127-139.
    • (1976) Pattern Recogn. , vol.8 , pp. 127-139
    • Wold, S.1
  • 10
    • 0002409366 scopus 로고
    • UNEQ: a disjoint modelling technique for pattern recognition based on normal distribution
    • Derde M.P., Massart D.L. UNEQ: a disjoint modelling technique for pattern recognition based on normal distribution. Anal. Chim. Acta. 1986, 184:33-51.
    • (1986) Anal. Chim. Acta. , vol.184 , pp. 33-51
    • Derde, M.P.1    Massart, D.L.2
  • 11
    • 0023693726 scopus 로고
    • DASCO: a new classification method
    • Frank I.E. DASCO: a new classification method. Chemometr. Intell. Lab. Syst. 1988, 4:215-222.
    • (1988) Chemometr. Intell. Lab. Syst. , vol.4 , pp. 215-222
    • Frank, I.E.1
  • 12
    • 0000952525 scopus 로고
    • Classification: oldtimers and newcomers
    • Frank I.E., Friedman J.H. Classification: oldtimers and newcomers. J. Chemom. 1989, 3:463-475.
    • (1989) J. Chemom. , vol.3 , pp. 463-475
    • Frank, I.E.1    Friedman, J.H.2
  • 14
    • 84881507884 scopus 로고    scopus 로고
    • Training with input selection and testing (TWIST) algorithm: a significant advance in pattern recognition performance of machine learning
    • Buscema M., Breda M., Lodwick W. Training with input selection and testing (TWIST) algorithm: a significant advance in pattern recognition performance of machine learning. J. Intell. Learn. Syst. Appl. 2013, 5:29-38.
    • (2013) J. Intell. Learn. Syst. Appl. , vol.5 , pp. 29-38
    • Buscema, M.1    Breda, M.2    Lodwick, W.3
  • 16
    • 53549114784 scopus 로고    scopus 로고
    • Auto-contractive maps: an artificial adaptive system for data mining. An application to Alzheimer disease
    • Buscema M., Grossi E., Snowdon D., Antuono P. Auto-contractive maps: an artificial adaptive system for data mining. An application to Alzheimer disease. Curr. Alzheimer Res. 2008, 5:481-498.
    • (2008) Curr. Alzheimer Res. , vol.5 , pp. 481-498
    • Buscema, M.1    Grossi, E.2    Snowdon, D.3    Antuono, P.4
  • 17
    • 58149346011 scopus 로고    scopus 로고
    • The semantic connectivity map: an adapting self-organizing knowledge discovery method in data bases
    • Buscema M., Grossi E. The semantic connectivity map: an adapting self-organizing knowledge discovery method in data bases. Int. J. Data Min. Bioinform. 2008, 2:362-404.
    • (2008) Int. J. Data Min. Bioinform. , vol.2 , pp. 362-404
    • Buscema, M.1    Grossi, E.2
  • 18
    • 84885725220 scopus 로고    scopus 로고
    • Auto-contractive maps, the H function, and the maximally regular graph (MRG): a new methodology for data mining
    • Springer Science+Business Media B.V, V. Capecchi (Ed.)
    • Buscema M., Sacco P.L. Auto-contractive maps, the H function, and the maximally regular graph (MRG): a new methodology for data mining. Applications of Mathematics in Models, Artificial Neural Networks and Arts 2010, Springer Science+Business Media B.V. V. Capecchi (Ed.).
    • (2010) Applications of Mathematics in Models, Artificial Neural Networks and Arts
    • Buscema, M.1    Sacco, P.L.2
  • 19
    • 70350674995 scopus 로고
    • On the shortest spanning subtree of a graph and the traveling salesman problem
    • Kruskal J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7:48-50.
    • (1956) Proc. Am. Math. Soc. , vol.7 , pp. 48-50
    • Kruskal, J.B.1
  • 21
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge (MA, USA), B. Schoelkopf, C.J.C. Burges, A.J. Smola (Eds.)
    • Platt J. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods - Support Vector Learning 1998, MIT Press, Cambridge (MA, USA). B. Schoelkopf, C.J.C. Burges, A.J. Smola (Eds.).
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.1
  • 23
    • 0036163654 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM classifier design
    • Keerthi S.S., Gilbert E.G. Convergence of a generalized SMO algorithm for SVM classifier design. Mach. Learn. 2002, 46:351-360.
    • (2002) Mach. Learn. , vol.46 , pp. 351-360
    • Keerthi, S.S.1    Gilbert, E.G.2
  • 24
    • 85164278893 scopus 로고
    • Partial least squares analysis with cross-validation for the two-class problem: a Monte Carlo study
    • Ståhle L., Wold S. Partial least squares analysis with cross-validation for the two-class problem: a Monte Carlo study. J. Chemometr. 1987, 1:185-196.
    • (1987) J. Chemometr. , vol.1 , pp. 185-196
    • Ståhle, L.1    Wold, S.2
  • 25
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • Cessie S., van Houwelingen J.C. Ridge estimators in logistic regression. Appl. Stat. 1992, 41:191-201.
    • (1992) Appl. Stat. , vol.41 , pp. 191-201
    • Cessie, S.1    van Houwelingen, J.C.2
  • 28
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • Breiman L. Random forest. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 29
    • 84856081391 scopus 로고    scopus 로고
    • Relationships between apple texture and rheological parameters by means of multivariate analysis
    • Ballabio D., Consonni V., Costa F. Relationships between apple texture and rheological parameters by means of multivariate analysis. Chemometr. Intell. Lab. Syst. 2012, 111:28-33.
    • (2012) Chemometr. Intell. Lab. Syst. , vol.111 , pp. 28-33
    • Ballabio, D.1    Consonni, V.2    Costa, F.3
  • 30
    • 84876578435 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship models for ready biodegradability of chemicals
    • Mansouri K., Ringsted T., Ballabio D., Todeschini R., Consonni V. Quantitative structure-activity relationship models for ready biodegradability of chemicals. J. Chem. Inf. Model. 2013, 53:867-878.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 867-878
    • Mansouri, K.1    Ringsted, T.2    Ballabio, D.3    Todeschini, R.4    Consonni, V.5
  • 31
    • 13844316757 scopus 로고    scopus 로고
    • Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer
    • Baggerly K.A., Morris J.S., Edmonson S.R., Coombes K.R. Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J. Natl. Cancer Inst. 2005, 97:307-309.
    • (2005) J. Natl. Cancer Inst. , vol.97 , pp. 307-309
    • Baggerly, K.A.1    Morris, J.S.2    Edmonson, S.R.3    Coombes, K.R.4
  • 33
    • 34247557649 scopus 로고    scopus 로고
    • CAIMAN (classification and influence matrix analysis): a new approach to the classification based on leverage-scaled functions
    • Todeschini R., Ballabio D., Consonni V., Mauri A., Pavan M. CAIMAN (classification and influence matrix analysis): a new approach to the classification based on leverage-scaled functions. Chemometr. Intell. Lab. Syst. 2007, 87:3-17.
    • (2007) Chemometr. Intell. Lab. Syst. , vol.87 , pp. 3-17
    • Todeschini, R.1    Ballabio, D.2    Consonni, V.3    Mauri, A.4    Pavan, M.5
  • 34
    • 0012996824 scopus 로고
    • Classification of olive oils from their fatty acid composition
    • Applied Science Publishers, London (UK)
    • Forina M., Armanino C., Lanteri S., Tiscornia E. Classification of olive oils from their fatty acid composition. Food Research and Data Analysis 1983, Applied Science Publishers, London (UK).
    • (1983) Food Research and Data Analysis
    • Forina, M.1    Armanino, C.2    Lanteri, S.3    Tiscornia, E.4
  • 36
    • 77957026052 scopus 로고    scopus 로고
    • A chemometric approach to the environmental problem of predicting toxicity in contaminated sediments
    • Alvarez-Guerra M., Ballabio D., Amigo J.M., Viguri J.R., Bro R. A chemometric approach to the environmental problem of predicting toxicity in contaminated sediments. J. Chemom. 2010, 24:379-386.
    • (2010) J. Chemom. , vol.24 , pp. 379-386
    • Alvarez-Guerra, M.1    Ballabio, D.2    Amigo, J.M.3    Viguri, J.R.4    Bro, R.5
  • 38
    • 0001757440 scopus 로고
    • Multivariate data analysis as discriminating method of the origin of wines
    • Forina M., Armanino C., Castino M., Ubigli M. Multivariate data analysis as discriminating method of the origin of wines. Vitis 1986, 25:189-201.
    • (1986) Vitis , vol.25 , pp. 189-201
    • Forina, M.1    Armanino, C.2    Castino, M.3    Ubigli, M.4
  • 40
    • 84890277379 scopus 로고    scopus 로고
    • Classification tools in chemistry. Part 1: linear models. PLS-DA
    • Ballabio D., Consonni V. Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal. Methods 2013, 5:3790-3798.
    • (2013) Anal. Methods , vol.5 , pp. 3790-3798
    • Ballabio, D.1    Consonni, V.2
  • 41
    • 0028246573 scopus 로고
    • Classification of multicomponent analytical data of olive oils using different neural networks
    • Zupan J., Novič M., Li X., Gasteiger J. Classification of multicomponent analytical data of olive oils using different neural networks. Anal. Chim. Acta. 1994, 292:219-234.
    • (1994) Anal. Chim. Acta. , vol.292 , pp. 219-234
    • Zupan, J.1    Novič, M.2    Li, X.3    Gasteiger, J.4
  • 42
    • 84904763709 scopus 로고    scopus 로고
    • Assessing the validity of QSARs for ready biodegradability of chemicals: an applicability domain perspective
    • Sahigara F., Ballabio D., Todeschini R., Consonni V. Assessing the validity of QSARs for ready biodegradability of chemicals: an applicability domain perspective. Curr. Comput. Aided Drug Des. 2014, 10.2174/1573409910666140410110241.
    • (2014) Curr. Comput. Aided Drug Des.
    • Sahigara, F.1    Ballabio, D.2    Todeschini, R.3    Consonni, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.