-
1
-
-
84910056872
-
Regulation of bacterial physiology by lysine acetylation of proteins
-
15 March 2014
-
Bernal V, Casta-o-Cerezo S, Gallego-Jara J, Ecija-Conesa A, de Diego T, Iborra JL, C-novas M. 15 March 2014. Regulation of bacterial physiology by lysine acetylation of proteins. New Biotechnol. http://dx.doi.org/10.1016/j.nbt.2014.03.002.
-
New Biotechnol
-
-
Bernal, V.1
Casta-o-Cerezo, S.2
Gallego-Jara, J.3
Ecija-Conesa, A.4
de Diego, T.5
Iborra, J.L.6
C-novas, M.7
-
2
-
-
77149120797
-
Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
-
Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Ahao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP. 2010. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004-1007. http://dx.doi.org/10.1126/science.1179687.
-
(2010)
Science
, vol.327
, pp. 1004-1007
-
-
Wang, Q.1
Zhang, Y.2
Yang, C.3
Xiong, H.4
Lin, Y.5
Yao, J.6
Li, H.7
Xie, L.8
Ahao, W.9
Yao, Y.10
Ning, Z.B.11
Zeng, R.12
Xiong, Y.13
Guan, K.L.14
Zhao, S.15
Zhao, G.P.16
-
3
-
-
79954582107
-
Control of protein function by reversible Nε-lysine acetylation in bacteria
-
Thao S, Escalante-Semerena JC. 2011. Control of protein function by reversible Nε-lysine acetylation in bacteria. Curr. Opin. Microbiol. 14: 200-2004. http://dx.doi.org/10.1016/j.mib.2010.12.013.
-
(2011)
Curr. Opin. Microbiol.
, vol.14
, pp. 200-2004
-
-
Thao, S.1
Escalante-Semerena, J.C.2
-
4
-
-
84864996189
-
Mechanistic insights into the regulation of metabolic enzymes by acetylation
-
Xiong Y, Guan KL. 2012. Mechanistic insights into the regulation of metabolic enzymes by acetylation. J. Cell Biol. 198:155-164. http://dx.doi.org/10.1083/jcb.201202056.
-
(2012)
J. Cell Biol.
, vol.198
, pp. 155-164
-
-
Xiong, Y.1
Guan, K.L.2
-
5
-
-
0347457075
-
Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
-
Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390-2392. http://dx.doi.org/10.1126/science.1077650.
-
(2002)
Science
, vol.298
, pp. 2390-2392
-
-
Starai, V.J.1
Celic, I.2
Cole, R.N.3
Boeke, J.D.4
Escalante-Semerena, J.C.5
-
6
-
-
84871407978
-
Acetoacetyl-CoA synthetase activity is controlled by a protein acetyltransferase with unique domain organization in Streptomyces lividans
-
Tucker AC, Escalante-Semerena JC. 2013. Acetoacetyl-CoA synthetase activity is controlled by a protein acetyltransferase with unique domain organization in Streptomyces lividans. Mol. Microbiol. 87:152-167. http://dx.doi.org/10.1111/mmi.12088.
-
(2013)
Mol. Microbiol.
, vol.87
, pp. 152-167
-
-
Tucker, A.C.1
Escalante-Semerena, J.C.2
-
7
-
-
84872047321
-
Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics
-
Wu X, Vellaichamy A, Wang D, Zamdborg L, Kelleher NL, Huber SC, Zhao Y. 2013. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics. J. Proteomics 79:60-71. http://dx.doi.org/10.1016/j.jprot.2012.12.001.
-
(2013)
J. Proteomics
, vol.79
, pp. 60-71
-
-
Wu, X.1
Vellaichamy, A.2
Wang, D.3
Zamdborg, L.4
Kelleher, N.L.5
Huber, S.C.6
Zhao, Y.7
-
8
-
-
84883772266
-
Acetylome with structural mapping reveals the significance of lysine acetylation in Thermus thermophiles
-
Okanishi H, Kim K, Masui R, Karamitsu S. 2013. Acetylome with structural mapping reveals the significance of lysine acetylation in Thermus thermophiles. J. Proteomics Res. 12:3952-3968. http://dx.doi.org/10.1021/pr400245k.
-
(2013)
J. Proteomics Res.
, vol.12
, pp. 3952-3968
-
-
Okanishi, H.1
Kim, K.2
Masui, R.3
Karamitsu, S.4
-
9
-
-
84881243155
-
Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus
-
Lee DW, Kim DI, Lee YJ, Choi JY, Kang S, Pan JG. 2013. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus. Proteomics 13:2278-2282. http://dx.doi.org/10.1002/pmic.201200072.
-
(2013)
Proteomics
, vol.13
, pp. 2278-2282
-
-
Lee, D.W.1
Kim, D.I.2
Lee, Y.J.3
Choi, J.Y.4
Kang, S.5
Pan, J.G.6
-
10
-
-
56649114286
-
The diversity of lysine-acetylated proteins in Escherichia coli
-
Yu BJ, Kim JA, Moon JH, Ryu SE, Pan JG. 2008. The diversity of lysine-acetylated proteins in Escherichia coli. J. Microbiol. Biotechnol. 18: 1529-1536.
-
(2008)
J. Microbiol. Biotechnol.
, vol.18
, pp. 1529-1536
-
-
Yu, B.J.1
Kim, J.A.2
Moon, J.H.3
Ryu, S.E.4
Pan, J.G.5
-
11
-
-
61649089277
-
Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli
-
Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y. 2009. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol. Cell. Proteomics 8:215-225. http://dx.doi.org/10.1074/mcp. M800187-MCP200.
-
(2009)
Mol. Cell. Proteomics
, vol.8
, pp. 215-225
-
-
Zhang, J.1
Sprung, R.2
Pei, J.3
Tan, X.4
Kim, S.5
Zhu, H.6
Liu, C.F.7
Grishin, N.V.8
Zhao, Y.9
-
12
-
-
33746620532
-
Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD_involvement in Bacillus subtilis
-
Gardner JG, Grundy FJ, Henkin TM, Escalante-Semerena JC. 2006. Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD_involvement in Bacillus subtilis. J. Bacteriol. 188:5460-5468. http://dx.doi.org/10.1128/JB.00215-06.
-
(2006)
J. Bacteriol.
, vol.188
, pp. 5460-5468
-
-
Gardner, J.G.1
Grundy, F.J.2
Henkin, T.M.3
Escalante-Semerena, J.C.4
-
13
-
-
82155175630
-
cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli
-
Casta-o-Cerezo S, Bernal V, Blanco-Catala J, Iborra JL, Canovas M. 2011. cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli. Mol. Microbiol. 82: 1110-1128. http://dx.doi.org/10.1111/j.1365-2958.2011.07873.x.
-
(2011)
Mol. Microbiol.
, vol.82
, pp. 1110-1128
-
-
Casta-o-Cerezo, S.1
Bernal, V.2
Blanco-Catala, J.3
Iborra, J.L.4
Canovas, M.5
-
14
-
-
77952222270
-
Reversible N-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris
-
Crosby HA, Heiniger EK, Harwood CS, Escalante-Semerena JC. 2010. Reversible N-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris. Mol. Microbiol. 76:874-888. http://dx.doi.org/10.1111/j.1365-2958.2010.07127.x.
-
(2010)
Mol. Microbiol.
, vol.76
, pp. 874-888
-
-
Crosby, H.A.1
Heiniger, E.K.2
Harwood, C.S.3
Escalante-Semerena, J.C.4
-
15
-
-
79959791094
-
Reversible acetylation and inactivation of Mycobacterium tuberculosis acetyl-CoA synthetase is dependent on cAMP
-
Xu H, Hegde SS, Blanchard JS. 2011. Reversible acetylation and inactivation of Mycobacterium tuberculosis acetyl-CoA synthetase is dependent on cAMP. Biochemistry 50:5883-5892. http://dx.doi.org/10.1021/bi200156t.
-
(2011)
Biochemistry
, vol.50
, pp. 5883-5892
-
-
Xu, H.1
Hegde, S.S.2
Blanchard, J.S.3
-
16
-
-
0037297590
-
Shortchain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae
-
Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC. 2003. Shortchain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 163:545-555.
-
(2003)
Genetics
, vol.163
, pp. 545-555
-
-
Starai, V.J.1
Takahashi, H.2
Boeke, J.D.3
Escalante-Semerena, J.C.4
-
17
-
-
0033927843
-
Regulation of acetyl coenzyme A synthetase in Escherichia coli
-
Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, Wolfe AJ. 2000. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 182:4173-4179. http://dx.doi.org/10.1128/JB.182.15.4173-4179.2000.
-
(2000)
J. Bacteriol.
, vol.182
, pp. 4173-4179
-
-
Kumari, S.1
Beatty, C.M.2
Browning, D.F.3
Busby, S.J.4
Simel, E.J.5
Hovel-Miner, G.6
Wolfe, A.J.7
-
18
-
-
0346964255
-
Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by nucleoid proteins FIS and IHF
-
Browning DF, Beatty CM, Sanstad EA, Gunn KE, Busby SJ, Wolfe AJ. 2004. Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by nucleoid proteins FIS and IHF. Mol. Microbiol. 51:241-254. http://dx.doi.org/10.1046/j.1365-2958.2003.03824.x.
-
(2004)
Mol. Microbiol.
, vol.51
, pp. 241-254
-
-
Browning, D.F.1
Beatty, C.M.2
Sanstad, E.A.3
Gunn, K.E.4
Busby, S.J.5
Wolfe, A.J.6
-
19
-
-
3242788065
-
Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica
-
Starai VJ, Escalante-Semerena JC. 2004. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J. Mol. Biol. 340:1005-1012. http://dx.doi.org/10.1016/j.jmb.2004.05.010.
-
(2004)
J. Mol. Biol.
, vol.340
, pp. 1005-1012
-
-
Starai, V.J.1
Escalante-Semerena, J.C.2
-
20
-
-
84860868848
-
System-wide studies of N-lysine acetylation in Rhodopseudomonas palustris reveal substrate specificity of protein acetyltransferases
-
Crosby HA, Pelletier DA, Hurst GB, Escalante-Semerena JC. 2012. System-wide studies of N-lysine acetylation in Rhodopseudomonas palustris reveal substrate specificity of protein acetyltransferases. J. Biol. Chem. 287:15590-15601. http://dx.doi.org/10.1074/jbc. M112.352104.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 15590-15601
-
-
Crosby, H.A.1
Pelletier, D.A.2
Hurst, G.B.3
Escalante-Semerena, J.C.4
-
21
-
-
77955285819
-
Cyclic AMP-regulated protein lysine acetylases in mycobacteria
-
Nambi S, Basu N, Visweswariah SS. 2010. Cyclic AMP-regulated protein lysine acetylases in mycobacteria. J. Biol. Chem. 285:24313-24323. http://dx.doi.org/10.1074/jbc. M110.118398.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 24313-24323
-
-
Nambi, S.1
Basu, N.2
Visweswariah, S.S.3
-
22
-
-
84862728653
-
CobB1 deacetylase activity in Streptomyces coelicolor
-
Mikulik K, Felsberg J, Kudrnacova E, Bezouskova S, Setinova D, Stodulkova E, Zidkova J, Zidek V. 2012. CobB1 deacetylase activity in Streptomyces coelicolor. Biochem. Cell Biol. 90:179-187. http://dx.doi.org/10.1139/o11-086.
-
(2012)
Biochem. Cell Biol.
, vol.90
, pp. 179-187
-
-
Mikulik, K.1
Felsberg, J.2
Kudrnacova, E.3
Bezouskova, S.4
Setinova, D.5
Stodulkova, E.6
Zidkova, J.7
Zidek, V.8
-
23
-
-
80052540505
-
Rapid chromosomic gene-inactivating technology of Saccharopolyspora erythraea
-
Hui L, Huang X-S, Liu D-Q, Ahao W, Fan W, Han S, Zhang B-C. 2009. Rapid chromosomic gene-inactivating technology of Saccharopolyspora erythraea. Bull. Acad. Mil. Med. Sci. 33:365-369.
-
(2009)
Bull. Acad. Mil. Med. Sci.
, vol.33
, pp. 365-369
-
-
Hui, L.1
Huang, X-S.2
Liu, D-Q.3
Ahao, W.4
Fan, W.5
Han, S.6
Zhang, B-C.7
-
24
-
-
0029802611
-
The two acetyl-coenzyme a synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation
-
van den Berg MA, de Jong-Gubbels P, Kortland CJ, va Kijken JP, Pronk JT, Steensma HY. 1996. The two acetyl-coenzyme a synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J. Biol. Chem. 271:28953-28959. http://dx.doi.org/10.1074/jbc.271.46.28953.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 28953-28959
-
-
van den Berg, M.A.1
de Jong-Gubbels, P.2
Kortland, C.J.3
va Kijken, J.P.4
Pronk, J.T.5
Steensma, H.Y.6
-
25
-
-
67349266694
-
Universal sample preparation method for proteome analysis
-
Wisniewski JR, Zougman A, Naqaraj N, Mann M. 2009. Universal sample preparation method for proteome analysis. Nat. Methods 6:359-362. http://dx.doi.org/10.1038/nmeth.1322.
-
(2009)
Nat. Methods
, vol.6
, pp. 359-362
-
-
Wisniewski, J.R.1
Zougman, A.2
Naqaraj, N.3
Mann, M.4
-
26
-
-
0024065387
-
Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12
-
Takamura Y, Nomura G. 1988. Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. J. Gen. Microbiol. 134:2249-2253. http://dx.doi.org/10.1099/00221287-134-8-2249.
-
(1988)
J. Gen. Microbiol.
, vol.134
, pp. 2249-2253
-
-
Takamura, Y.1
Nomura, G.2
-
27
-
-
47249127304
-
Biochemical and mutational analyses of AcuA, the acetyltransferase enzyme that controls the activity of the acetyl coenzyme a synthetase (AcsA) in Bacillus subtilis
-
Gardner JG, Escalante-Semerena JC. 2008. Biochemical and mutational analyses of AcuA, the acetyltransferase enzyme that controls the activity of the acetyl coenzyme a synthetase (AcsA) in Bacillus subtilis. J. Bacteriol. 190:5132-5136. http://dx.doi.org/10.1128/JB.00340-08.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 5132-5136
-
-
Gardner, J.G.1
Escalante-Semerena, J.C.2
-
28
-
-
0034698085
-
Kinetic mechanism of the histone acetyltransferase GCN5 from yeast
-
Tanner KG, Langer MR, Kim Y, Denu JM. 2000. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J. Biol. Chem. 275:22048-22055. http://dx.doi.org/10.1074/jbc. M002893200.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 22048-22055
-
-
Tanner, K.G.1
Langer, M.R.2
Kim, Y.3
Denu, J.M.4
-
29
-
-
0033877252
-
GCN5-related N-acetyltransferases: a structural overview
-
Dyda F, Klein DC, Hickman AB. 2000. GCN5-related N-acetyltransferases: a structural overview. Annu. Rev. Biophys. Biomol. Struct. 29:81-103. http://dx.doi.org/10.1146/annurev.biophys.29.1.81.
-
(2000)
Annu. Rev. Biophys. Biomol. Struct.
, vol.29
, pp. 81-103
-
-
Dyda, F.1
Klein, D.C.2
Hickman, A.B.3
-
30
-
-
79953058855
-
In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate
-
Chan CH, Garrity J, Crosby HA, Escalante-Semerena JC. 2011. In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate. Mol. Microbiol. 80:168-183. http://dx.doi.org/10.1111/j.1365-2958.2011.07566.x.
-
(2011)
Mol. Microbiol.
, vol.80
, pp. 168-183
-
-
Chan, C.H.1
Garrity, J.2
Crosby, H.A.3
Escalante-Semerena, J.C.4
-
31
-
-
34848914803
-
Biochemical and structural characterization of the paralogous benzoate CoA ligases from Burkholderia xenovorans LB400: defining the entry point into the novel benzoate oxidation (box) pathway
-
Bains J, Boulanger MJ. 2007. Biochemical and structural characterization of the paralogous benzoate CoA ligases from Burkholderia xenovorans LB400: defining the entry point into the novel benzoate oxidation (box) pathway. J. Mol. Biol. 373:965-977. http://dx.doi.org/10.1016/j.jmb.2007.08.008.
-
(2007)
J. Mol. Biol.
, vol.373
, pp. 965-977
-
-
Bains, J.1
Boulanger, M.J.2
|