메뉴 건너뛰기




Volumn 96, Issue 3, 2014, Pages 249-267

Least-squares independence regression for non-linear causal inference under non-Gaussian noise

Author keywords

Causal inference; Least squares independence regression; Non Gaussian; Non linear; Squared loss mutual information

Indexed keywords

ADDITIVE NOISE; INFERENCE ENGINES; REGRESSION ANALYSIS;

EID: 84905447874     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5423-y     Document Type: Article
Times cited : (6)

References (29)
  • 5
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • e8 10.1371/journal.pbio.0050008
    • Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J. J., & Gardner, T. S. (2007). Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology, 5(1), e8.
    • (2007) PLoS Biology , vol.5 , Issue.1
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3    Mogno, I.4    Wierzbowski, J.5    Cottarel, G.6    Kasif, S.7    Collins, J.J.8    Gardner, T.S.9
  • 6
    • 21344486242 scopus 로고
    • A consistent test for bivariate dependence
    • 10.2307/1403753 0826.62032
    • Feuerverger, A. (1993). A consistent test for bivariate dependence. International Statistical Review, 61(3), 419-433.
    • (1993) International Statistical Review , vol.61 , Issue.3 , pp. 419-433
    • Feuerverger, A.1
  • 7
    • 68649121147 scopus 로고    scopus 로고
    • Kernel dimension reduction in regression
    • 10.1214/08-AOS637 1168.62049 2533474
    • Fukumizu, K., Bach, F. R., & Jordan, M. (2009). Kernel dimension reduction in regression. The Annals of Statistics, 37(4), 1871-1905.
    • (2009) The Annals of Statistics , vol.37 , Issue.4 , pp. 1871-1905
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.3
  • 10
    • 84858789485 scopus 로고    scopus 로고
    • Nonlinear causal discovery with additive noise models
    • D. Koller D. Schuurmans Y. Bengio L. Botton (eds) 21 MIT Press Cambridge
    • Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., & Schölkopf, B. (2009). Nonlinear causal discovery with additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, & L. Botton (Eds.), Advances in neural information processing systems (Vol. 21, pp. 689-696). Cambridge: MIT Press.
    • (2009) Advances in Neural Information Processing Systems , pp. 689-696
    • Hoyer, P.O.1    Janzing, D.2    Mooij, J.M.3    Peters, J.4    Schölkopf, B.5
  • 11
    • 80053147274 scopus 로고    scopus 로고
    • Justifying additive noise model-based causal discovery via algorithmic information theory
    • 10.1142/S1230161210000126 1190.62003 2658847
    • Janzing, D., & Steudel, B. (2010). Justifying additive noise model-based causal discovery via algorithmic information theory. Open Systems & Information Dynamics, 17(02), 189-212.
    • (2010) Open Systems & Information Dynamics , vol.17 , Issue.2 , pp. 189-212
    • Janzing, D.1    Steudel, B.2
  • 12
    • 84867133788 scopus 로고    scopus 로고
    • Statistical analysis of kernel-based least-squares density-ratio estimation
    • 10.1007/s10994-011-5266-3 1246.68182 2897527
    • Kanamori, T., Suzuki, T., & Sugiyama, M. (2012). Statistical analysis of kernel-based least-squares density-ratio estimation. Machine Learning, 86(3), 335-367.
    • (2012) Machine Learning , vol.86 , Issue.3 , pp. 335-367
    • Kanamori, T.1    Suzuki, T.2    Sugiyama, M.3
  • 16
    • 33646887390 scopus 로고
    • On the limited memory method for large scale optimization
    • 10.1007/BF01589116 0696.90048 1038245
    • Liu, D. C., & Nocedal, J. (1989). On the limited memory method for large scale optimization. Mathematical Programming Series B, 45, 503-528.
    • (1989) Mathematical Programming Series B , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 20
    • 0001454867 scopus 로고
    • On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling
    • 10.1080/14786440009463897 JFM 31.0238.04
    • Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine, 50, 157-175.
    • (1900) Philosophical Magazine , vol.50 , pp. 157-175
    • Pearson, K.1
  • 21
    • 0004267646 scopus 로고
    • Princeton University Press Princeton 0193.18401
    • Rockafellar, R. T. (1970). Convex analysis. Princeton: Princeton University Press.
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 24
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • 1883281
    • Steinwart, I. (2001). On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2, 67-93.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 25
    • 84877714816 scopus 로고    scopus 로고
    • Sufficient dimension reduction via squared-loss mutual information estimation
    • 10.1162/NECO-a-00407 3060123
    • Suzuki, T., & Sugiyama, M. (2013). Sufficient dimension reduction via squared-loss mutual information estimation. Neural Computation, 3(25), 725-758.
    • (2013) Neural Computation , vol.3 , Issue.25 , pp. 725-758
    • Suzuki, T.1    Sugiyama, M.2
  • 26
    • 60849121715 scopus 로고    scopus 로고
    • Mutual information estimation reveals global associations between stimuli and biological processes
    • Suzuki, T., Sugiyama, M., Kanamori, T., & Sese, J. (2009). Mutual information estimation reveals global associations between stimuli and biological processes. BMC Bioinformatics, 10(S52).
    • (2009) BMC Bioinformatics , vol.10
    • Suzuki, T.1    Sugiyama, M.2    Kanamori, T.3    Sese, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.