메뉴 건너뛰기




Volumn , Issue , 2014, Pages 6844-6848

Sequence classification using the high-level features extracted from deep neural networks

Author keywords

ARMA recurrent neural net; deep neural net; feature extraction; phone recognition

Indexed keywords

FEATURE EXTRACTION; RECURRENT NEURAL NETWORKS; SPEECH RECOGNITION;

EID: 84905280906     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2014.6854926     Document Type: Conference Paper
Times cited : (44)

References (37)
  • 3
    • 85083950550 scopus 로고    scopus 로고
    • A Primal-Dual Method for Training Recurrent Neural Networks Constrained by the Echo-State Property
    • Chen, J. and Deng, L. "A Primal-Dual Method for Training Recurrent Neural Networks Constrained by the Echo-State Property", Proc. ICLR, 2014.
    • (2014) Proc. ICLR
    • Chen, J.1    Deng, L.2
  • 4
    • 80051616844 scopus 로고    scopus 로고
    • Large vocabulary continuous speech recognition with context-dependent DBNHMMs
    • Dahl, G., Yu, D., Deng, L., and Acero, A. "Large vocabulary continuous speech recognition with context-dependent DBNHMMs," Proc. ICASSP, 2011.
    • (2011) Proc. ICASSP
    • Dahl, G.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 5
    • 84055222005 scopus 로고    scopus 로고
    • Contextdependent pre-trained deep neural networks for largevocabulary speech recognition
    • Dahl, G., Yu, D., Deng, L., and Acero, A. "Contextdependent pre-trained deep neural networks for largevocabulary speech recognition," IEEE Trans. on Audio, Speech, and Language Processing, vol. 20, pp. 30-42, 2012.
    • (2012) IEEE Trans. on Audio, Speech, and Language Processing , vol.20 , pp. 30-42
    • Dahl, G.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 6
    • 84876672166 scopus 로고    scopus 로고
    • Machine learning paradigms in speech recognition: An overview
    • May
    • Deng, L. and Li, X. "Machine learning paradigms in speech recognition: An overview," IEEE Transactions on Audio, Speech, &Language, vol. 21, pp. 1060-1089, May 2013.
    • (2013) IEEE Transactions on Audio, Speech, &Language , vol.21 , pp. 1060-1089
    • Deng, L.1    Li, X.2
  • 7
    • 84890545163 scopus 로고    scopus 로고
    • A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion
    • Deng, L., Abdel-Hamid, O., and Yu, D. "A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion," Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Deng, L.1    Abdel-Hamid, O.2    Yu, D.3
  • 8
    • 84890526837 scopus 로고    scopus 로고
    • New types of deep neural network learning for speech recognition and related applications: An overview
    • Deng, L., Hinton, G., and Kingsbury, B. "New types of deep neural network learning for speech recognition and related applications: An overview," Proc. ICASSP, 2013a.
    • (2013) Proc. ICASSP
    • Deng, L.1    Hinton, G.2    Kingsbury, B.3
  • 10
    • 84867614591 scopus 로고    scopus 로고
    • Scalable stacking and learning for building deep architectures
    • Deng, L., Yu, D., and Platt, J. "Scalable stacking and learning for building deep architectures," Proc. ICASSP 2012.
    • (2012) Proc. ICASSP
    • Deng, L.1    Yu, D.2    Platt, J.3
  • 11
    • 84865768819 scopus 로고    scopus 로고
    • Deep Convex Network: A scalable architecture for speech pattern classification
    • Deng, L. and Yu, D. "Deep Convex Network: A scalable architecture for speech pattern classification," Proc. Interspeech, 2011.
    • (2011) Proc. Interspeech
    • Deng, L.1    Yu, D.2
  • 14
    • 84890543083 scopus 로고    scopus 로고
    • Speech recognition with deep recurrent neural networks
    • Graves, A., Mohamed, A., and Hinton, G. "Speech recognition with deep recurrent neural networks," Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Graves, A.1    Mohamed, A.2    Hinton, G.3
  • 15
    • 84893701254 scopus 로고    scopus 로고
    • Hybrid speech recognition with deep bidirectional LSTM
    • Graves, A., Jaitly, N., and Mohamed, A. "Hybrid speech recognition with deep bidirectional LSTM," Proc. ASRU, 2013a.
    • (2013) Proc. ASRU
    • Graves, A.1    Jaitly, N.2    Mohamed, A.3
  • 18
    • 0033709098 scopus 로고    scopus 로고
    • Tandem connectionist feature extraction for conventional HMM systems
    • Hermansky, H, Ellis, D. and Sharma, S. "Tandem connectionist feature extraction for conventional HMM systems," Proc. ICASSP, 2000.
    • (2000) Proc. ICASSP
    • Hermansky, H.1    Ellis, D.2    Sharma, S.3
  • 21
    • 84878539964 scopus 로고    scopus 로고
    • Application of pre-trained deep neural networks to large vocabulary speech recognition
    • Jaitly, N., Nguyen, P., Senior, A. and V. Vanhoucke, "Application of pre-trained deep neural networks to large vocabulary speech recognition," in Proc. InterSpeech-2012
    • Proc. InterSpeech-2012
    • Jaitly, N.1    Nguyen, P.2    Senior, A.3    Vanhoucke, V.4
  • 22
    • 84878379108 scopus 로고    scopus 로고
    • Scalable minimum Bayes risk training of deep neural network acoustic models using distributed Hessian-free optimization
    • Kingsbury, B., Sainath, T., and Soltau, H. "Scalable minimum Bayes risk training of deep neural network acoustic models using distributed Hessian-free optimization," Proc. Interspeech, 2012.
    • (2012) Proc. Interspeech
    • Kingsbury, B.1    Sainath, T.2    Soltau, H.3
  • 24
    • 79959840616 scopus 로고    scopus 로고
    • Investigation of fullsequence training of deep belief networks for speech recognition
    • Mohamed A., Yu, D., and Deng, L. "Investigation of fullsequence training of deep belief networks for speech recognition," Proc. Interspeech, 2010.
    • (2010) Proc. Interspeech
    • Mohamed, A.1    Yu, D.2    Deng, L.3
  • 26
    • 84897497795 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • Pascanu, R., Mikolov, T., and Bengio, Y. "On the difficulty of training recurrent neural networks," Proc. ICML, 2013.
    • (2013) Proc. ICML
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 27
    • 84867593213 scopus 로고    scopus 로고
    • Auto-encoder bottleneck features using deep belief networks
    • Sainath, B. Kingsbury, and B. Ramabhadran, "Auto-encoder bottleneck features using deep belief networks," Proc. ICASSP, 2012
    • (2012) Proc. ICASSP
    • Sainath, B.K.1    Ramabhadran, B.2
  • 29
    • 84865801985 scopus 로고    scopus 로고
    • Conversational speech transcription using context-dependent deep neural networks
    • Seide, F., Li, G., and D. Yu, "Conversational speech transcription using context-dependent deep neural networks," Proc. Interspeech, 2011.
    • (2011) Proc. Interspeech
    • Seide, F.1    Li, G.2    Yu, D.3
  • 30
    • 84890543852 scopus 로고    scopus 로고
    • Error back propagation for sequence training of context-dependent deep neural networks for conversational speech transcription
    • Su, H., Li, G., Yu, D., and Seide, F. "Error back propagation for sequence training of context-dependent deep neural networks for conversational speech transcription," Proc. ICASSP, 2013.
    • (2013) Proc. ICASSP
    • Su, H.1    Li, G.2    Yu, D.3    Seide, F.4
  • 35
    • 84906225757 scopus 로고    scopus 로고
    • A scalable approach to using DNN-derived features in GMM-HMM based acoustic modeling for LVCSR
    • Yan, Z., Huo, Q, and Xu, J. "A scalable approach to using DNN-derived features in GMM-HMM based acoustic modeling for LVCSR," Proc. Interspeech, 2013.
    • (2013) Proc. Interspeech
    • Yan, Z.1    Huo, Q.2    Xu, J.3
  • 36
    • 84871387302 scopus 로고    scopus 로고
    • The deep tensor neural network with applications to large vocabulary speech recognition
    • Yu, D., Deng, L., and Seide, F. "The deep tensor neural network with applications to large vocabulary speech recognition," IEEE Transactions on Audio, Speech, and Language Processing, vol. 21, no. 2, pp. 388-396, 2013.
    • (2013) IEEE Transactions on Audio, Speech, and Language Processing , vol.21 , Issue.2 , pp. 388-396
    • Yu, D.1    Deng, L.2    Seide, F.3
  • 37
    • 84055163920 scopus 로고    scopus 로고
    • Roles of pre-training and fine-tuning in context-dependent dbn-HMMS for real-world speech recognition
    • Yu, D., Deng, L., and Dahl, G. "Roles of Pre-Training and Fine-Tuning in Context-Dependent DBN-HMMs for Real-World Speech Recognition," Proc. NIPS Workshop, 2010.
    • (2010) Proc. NIPS Workshop
    • Yu, D.1    Deng, L.2    Dahl, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.