메뉴 건너뛰기




Volumn 41, Issue 17, 2014, Pages 7776-7788

A semantic approach to improve neighborhood formation in collaborative recommender systems

Author keywords

Collaborative filtering; Fake neighborhood; Semantic reasoning; Semantic similarity metric; Sparsity problem

Indexed keywords

COLLABORATIVE FILTERING; SEMANTICS;

EID: 84905279413     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2014.06.038     Document Type: Article
Times cited : (39)

References (32)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Towards the next generation of recommender systems: A survey of the state-Of-The-Art and possible extensions
    • G. Adomavicius, and A. Tuzhilin Towards the next generation of recommender systems: A survey of the state-of-the-art and possible extensions IEEE Transactions on Knowledge and Data Engineering 17 2005 734 739
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , pp. 734-739
    • Adomavicius, G.1    Tuzhilin, A.2
  • 2
    • 10444258554 scopus 로고    scopus 로고
    • R-Queries: Enabling querying for semantic associations on the semantic web
    • Anyanwu, K.; & Sheth, A. (2003). r-Queries: Enabling querying for semantic associations on the semantic web. 12th International world wide web conference (pp. 115-125).
    • (2003) 12th International World Wide Web Conference , pp. 115-125
    • Anyanwu, K.1    Sheth, A.2
  • 5
    • 67349271700 scopus 로고    scopus 로고
    • Collaborative filtering adapted to recommender systems of e-learning
    • J. Bobadilla, F. Serradilla, and A. Hernando Collaborative filtering adapted to recommender systems of e-learning Knowledge Based Systems 22 2009 261 265
    • (2009) Knowledge Based Systems , vol.22 , pp. 261-265
    • Bobadilla, J.1    Serradilla, F.2    Hernando, A.3
  • 6
    • 0012636782 scopus 로고    scopus 로고
    • Integrating knowledge-based and collaborative filtering in recommender systems
    • Burke, R. (1999). Integrating knowledge-based and collaborative filtering in recommender systems. In Workshop on artificial intelligence and electronic commerce (pp. 69-72).
    • (1999) Workshop on Artificial Intelligence and Electronic Commerce , pp. 69-72
    • Burke, R.1
  • 8
    • 80051731436 scopus 로고    scopus 로고
    • Solving the sparsity problem in recommender systems using association retrieval
    • Y. Chen, W. ChanLe, X. Ming, and G. Xiaojun Solving the sparsity problem in recommender systems using association retrieval Journal of Computers 6 2011 1896 1902
    • (2011) Journal of Computers , vol.6 , pp. 1896-1902
    • Chen, Y.1    Chanle, W.2    Ming, X.3    Xiaojun, G.4
  • 9
    • 84885960632 scopus 로고    scopus 로고
    • Evaluating the impact of proactivity in the user experience of a context-aware restaurant recommender for android smartphones
    • D. Gallego, W. Woerndl, and G. Huecas Evaluating the impact of proactivity in the user experience of a context-aware restaurant recommender for android smartphones Journal of Systems Architecture 59 2013 748 758
    • (2013) Journal of Systems Architecture , vol.59 , pp. 748-758
    • Gallego, D.1    Woerndl, W.2    Huecas, G.3
  • 13
    • 35348870573 scopus 로고    scopus 로고
    • A comparison of collaborative filtering recommendation algorithms for e-commerce
    • Z. Huang, D. Zeng, and H. Chen A comparison of collaborative filtering recommendation algorithms for e-commerce IEEE Intelligent Systems 22 2007 68 78
    • (2007) IEEE Intelligent Systems , vol.22 , pp. 68-78
    • Huang, Z.1    Zeng, D.2    Chen, H.3
  • 14
    • 0346961206 scopus 로고    scopus 로고
    • Application of web usage mining and product taxonomy to collaborative recommendations in e-commerce
    • Y.H. Kim, and J.K. Cho Application of web usage mining and product taxonomy to collaborative recommendations in e-commerce Expert Systems with Applications 26 2 2004 233 246
    • (2004) Expert Systems with Applications , vol.26 , Issue.2 , pp. 233-246
    • Kim, Y.H.1    Cho, J.K.2
  • 15
    • 9244231155 scopus 로고    scopus 로고
    • A hybrid collaborative filtering method for multiple-interests and multiple-content recommendation in e-commerce
    • Y. Li, L. Lu, and L. Xuefeng A hybrid collaborative filtering method for multiple-interests and multiple-content recommendation in e-commerce Expert Systems with Applications 28 2004 67 77
    • (2004) Expert Systems with Applications , vol.28 , pp. 67-77
    • Li, Y.1    Lu, L.2    Xuefeng, L.3
  • 20
    • 3843101482 scopus 로고    scopus 로고
    • An evaluation of neighbourhood formation on the performance of collaborative filtering
    • M.P. O'Mahony, N.J. Hurley, and G.C.M. Silvestre An evaluation of neighbourhood formation on the performance of collaborative filtering Artificial Intelligence Review 21 2004 215 228
    • (2004) Artificial Intelligence Review , vol.21 , pp. 215-228
    • O'Mahony, M.P.1    Hurley, N.J.2    Silvestre, G.C.M.3
  • 21
    • 80055043595 scopus 로고    scopus 로고
    • A hybrid recommender system for the selective dissemination of research resources in a technology transfer office
    • C. Porcel, A. Tejeda-Lorente, M.A. MartInez, and E. Herrera-Viedma A hybrid recommender system for the selective dissemination of research resources in a technology transfer office Information Sciences 184 2012 1 19
    • (2012) Information Sciences , vol.184 , pp. 1-19
    • Porcel, C.1    Tejeda-Lorente, A.2    Martinez, M.A.3    Herrera-Viedma, E.4
  • 27
    • 20844459057 scopus 로고    scopus 로고
    • International handbooks on information systems Springer
    • S. Staab, and R. Studer Handbook on ontologies International handbooks on information systems 2004 Springer
    • (2004) Handbook on Ontologies
    • Staab, S.1    Studer, R.2
  • 28
    • 77952337308 scopus 로고    scopus 로고
    • Music recommendation using content and context information mining
    • J.H. Su, H.H. Yeh, P.S. Yu, and V.S. Tseng Music recommendation using content and context information mining IEEE Intelligent Systems 25 2010 16 26
    • (2010) IEEE Intelligent Systems , vol.25 , pp. 16-26
    • Su, J.H.1    Yeh, H.H.2    Yu, P.S.3    Tseng, V.S.4
  • 32
    • 57349200477 scopus 로고    scopus 로고
    • On exploiting classification taxonomies in recommender systems
    • C.N. Ziegler, G. Lausen, and J.A. Konstan On exploiting classification taxonomies in recommender systems AI Communications 21 2008 97 125
    • (2008) AI Communications , vol.21 , pp. 97-125
    • Ziegler, C.N.1    Lausen, G.2    Konstan, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.