메뉴 건너뛰기




Volumn , Issue , 2014, Pages 16-20

Online dictionary learning from big data using accelerated stochastic approximation algorithms

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; APPROXIMATION THEORY; BIG DATA; OPTIMIZATION; SIGNAL PROCESSING;

EID: 84905259578     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2014.6853549     Document Type: Conference Paper
Times cited : (19)

References (34)
  • 2
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • Mar.
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro, "Online learning for matrix factorization and sparse coding," J. Machine Learning Research, vol. 11, pp. 19-60, Mar. 2010.
    • (2010) J. Machine Learning Research , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 4
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • D. L. Donoho, "Compressed sensing," IEEE Trans. Inform. Theory, vol. 52, pp. 1289-1306, 2006.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 1289-1306
    • Donoho, D.L.1
  • 5
    • 84864657699 scopus 로고    scopus 로고
    • Semi-supervised dictionary learning for network-wide link load prediction
    • Baiona: Spain, May
    • P. A. Forero, K. Rajawat, and G. B. Giannakis, "Semi-supervised dictionary learning for network-wide link load prediction," in Proc. CIP, Baiona: Spain, May 2012.
    • (2012) Proc. CIP
    • Forero, P.A.1    Rajawat, K.2    Giannakis, G.B.3
  • 6
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    • L. Grippo and M. Sciandrone, "On the convergence of the block nonlinear Gauss-Seidel method under convex constraints," Operations Reseach Letters, vol. 26, no. 3, pp. 127-136, 2000.
    • (2000) Operations Reseach Letters , vol.26 , Issue.3 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 7
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of block coordinate decent method for nondifferentiable minimization
    • June
    • P. Tseng, "Convergence of block coordinate decent method for nondifferentiable minimization," J. of Optimization Theory and Applications, vol. 109, pp. 475-494, June 2001.
    • (2001) J. of Optimization Theory and Applications , vol.109 , pp. 475-494
    • Tseng, P.1
  • 8
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun, "A coordinate gradient descent method for nonsmooth separable minimization," Math. Program., Ser. B, vol. 117, pp. 387-423, 2009.
    • (2009) Math. Program., Ser. B , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 9
    • 84861594597 scopus 로고    scopus 로고
    • Accelerated block-coordinate relaxation for regularized optimization
    • S. J. Wright, "Accelerated block-coordinate relaxation for regularized optimization," SIAM J. Optim., vol. 22, no. 1, pp. 159-186, 2012.
    • (2012) SIAM J. Optim. , vol.22 , Issue.1 , pp. 159-186
    • Wright, S.J.1
  • 10
    • 84865692149 scopus 로고    scopus 로고
    • Efficiency of coordinate descent methods on huge-scale optimization problems
    • Y. Nesterov, "Efficiency of coordinate descent methods on huge-scale optimization problems," SIAM J. Optim., vol. 22, no. 2, pp. 341-362, 2012.
    • (2012) SIAM J. Optim. , vol.22 , Issue.2 , pp. 341-362
    • Nesterov, Y.1
  • 11
    • 84885030988 scopus 로고    scopus 로고
    • A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion
    • Y. Xu and W. Yin, "A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion," SIAM J. Imaging, vol. 6, no. 3, pp. 1758-1789, 2013.
    • (2013) SIAM J. Imaging , vol.6 , Issue.3 , pp. 1758-1789
    • Xu, Y.1    Yin, W.2
  • 12
    • 84897116612 scopus 로고    scopus 로고
    • Iteration complexity of randomized blockcoordinate descent methods for minimizing a composite function
    • Dec.
    • P. Richtarik and M. Takac, "Iteration complexity of randomized blockcoordinate descent methods for minimizing a composite function," Math. Program., Ser. A, pp. 1-38, Dec. 2012.
    • (2012) Math. Program., Ser. A , pp. 1-38
    • Richtarik, P.1    Takac, M.2
  • 13
    • 67650178787 scopus 로고    scopus 로고
    • Sparse reconstruction by separable approximation
    • July
    • S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, "Sparse reconstruction by separable approximation," IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2479-2493, July 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.7 , pp. 2479-2493
    • Wright, S.J.1    Nowak, R.D.2    Figueiredo, M.A.T.3
  • 14
    • 84880570485 scopus 로고    scopus 로고
    • A unified convergence analysis of block successive minimization methods for nonsmooth optimization
    • M. Razaviyayn, M. Hong, and Z.-Q. Luo, "A unified convergence analysis of block successive minimization methods for nonsmooth optimization," SIAM J. Optimization, vol. 23, no. 2, pp. 1126-1153, 2013.
    • (2013) SIAM J. Optimization , vol.23 , Issue.2 , pp. 1126-1153
    • Razaviyayn, M.1    Hong, M.2    Luo, Z.-Q.3
  • 15
    • 84875134236 scopus 로고    scopus 로고
    • Stochastic dual coordinate ascent methods for regularized loss minimization
    • S. Shalev-Schwartz and T. Zhang, "Stochastic dual coordinate ascent methods for regularized loss minimization," J. Machine Learning Research, vol. 14, pp. 567-599, 2013.
    • (2013) J. Machine Learning Research , vol.14 , pp. 567-599
    • Shalev-Schwartz, S.1    Zhang, T.2
  • 16
    • 84866870481 scopus 로고    scopus 로고
    • Stochastic coordinate descent methods for regularized smooth and nonsmooth losses
    • P. A. Flach, T. de Bie, and N. Cristianini, Eds. Springer
    • Q. Tao, K. Kong, D. Chu, and G. Wu, "Stochastic coordinate descent methods for regularized smooth and nonsmooth losses," in Lecture Notes in Computer Science, ser. Machine Learning and Knowledge Discovery in Databases, P. A. Flach, T. de Bie, and N. Cristianini, Eds., vol. 7523. Springer, 2012, pp. 537-552.
    • (2012) Lecture Notes in Computer Science, Ser. Machine Learning and Knowledge Discovery in Databases , vol.7523 , pp. 537-552
    • Tao, Q.1    Kong, K.2    Chu, D.3    Wu, G.4
  • 17
    • 84885088639 scopus 로고    scopus 로고
    • Decentralized sparsityregularized rank minimization: Algorithms and applications
    • Nov.
    • M. Mardani, G. Mateos, and G. B. Giannakis, "Decentralized sparsityregularized rank minimization: Algorithms and applications," IEEE Trans. Signal Process., vol. 61, no. 11, pp. 5374-5388, Nov. 2013.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.11 , pp. 5374-5388
    • Mardani, M.1    Mateos, G.2    Giannakis, G.B.3
  • 19
    • 84859418371 scopus 로고    scopus 로고
    • Online learning and online convex optimization
    • S. Shalev-Shwartz, "Online learning and online convex optimization," Foundations and Trends in Machine Learning, vol. 4, no. 2, pp. 107-194, 2012.
    • (2012) Foundations and Trends in Machine Learning , vol.4 , Issue.2 , pp. 107-194
    • Shalev-Shwartz, S.1
  • 20
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • Dec.
    • J. Duchi and Y. Singer, "Efficient online and batch learning using forward backward splitting," J. Machine Learning Research, vol. 10, pp. 2899-2934, Dec. 2009.
    • (2009) J. Machine Learning Research , vol.10 , pp. 2899-2934
    • Duchi, J.1    Singer, Y.2
  • 21
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," J. Machine Learning Research, vol. 12, pp. 2121-2159, 2011.
    • (2011) J. Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 23
    • 34548480020 scopus 로고
    • A method for solving the convex programming problem with convergence rate O(1/k2)
    • in Russian
    • Y. Nesterov, "A method for solving the convex programming problem with convergence rate O(1/k2)," Dokl. Akad. Nauk SSSR, vol. 269, pp. 543-547, 1983, in Russian.
    • (1983) Dokl. Akad. Nauk SSSR , vol.269 , pp. 543-547
    • Nesterov, Y.1
  • 24
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM J. Imaging Sciences, vol. 2, no. 1, pp. 183-202, 2009.
    • (2009) SIAM J. Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 25
    • 70350593691 scopus 로고    scopus 로고
    • Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
    • -, "Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems," IEEE Trans. Image Processing, vol. 18, pp. 2419-2439, 2009.
    • (2009) IEEE Trans. Image Processing , vol.18 , pp. 2419-2439
    • Beck, A.1    Teboulle, M.2
  • 26
    • 80053486791 scopus 로고    scopus 로고
    • Over-relaxation of the fast iterative shrinkage-thresholding algorithm with variable stepsize
    • M. Yamagishi and I. Yamada, "Over-relaxation of the fast iterative shrinkage-thresholding algorithm with variable stepsize," Inverse Problems, vol. 27, no. 10, 2011.
    • (2011) Inverse Problems , vol.27 , Issue.10
    • Yamagishi, M.1    Yamada, I.2
  • 27
    • 80051627966 scopus 로고    scopus 로고
    • Acceleration of adaptive proximal forward-backward splitting method and its application to sparse system identification
    • Prague: Czech Republic, May 22-27
    • M. Yamagishi, M. Yukawa, and I. Yamada, "Acceleration of adaptive proximal forward-backward splitting method and its application to sparse system identification," in Proc. IEEE ICASSP, Prague: Czech Republic, May 22-27 2011, pp. 4296-4299.
    • (2011) Proc. IEEE ICASSP , pp. 4296-4299
    • Yamagishi, M.1    Yukawa, M.2    Yamada, I.3
  • 33
    • 84905283746 scopus 로고    scopus 로고
    • [Online]. Available: http://www.internet2.edu/observatory/
  • 34
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011.
    • (2011) Foundations and Trends in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.