메뉴 건너뛰기




Volumn 8399 LNAI, Issue , 2014, Pages 162-177

The use of the label hierarchy in hierarchical multi-label classification improves performance

Author keywords

Habitat modelling; Hierarchical multi label classification; Image classification; Multi label classification; Predictive clustering trees; Text classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); FORECASTING; TEXT PROCESSING;

EID: 84905259010     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-08407-7_11     Document Type: Conference Paper
Times cited : (2)

References (19)
  • 3
    • 78651375098 scopus 로고    scopus 로고
    • A survey of hierarchical classification across different application domains
    • Silla, C., Freitas, A.: A survey of hierarchical classification across different application domains. Data Min. Knowl. Disc. 22(1-2), 31-72 (2011)
    • (2011) Data Min. Knowl. Disc. , vol.22 , Issue.1-2 , pp. 31-72
    • Silla, C.1    Freitas, A.2
  • 6
    • 84870255848 scopus 로고    scopus 로고
    • Tree ensembles for predicting structured outputs
    • Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recogn. 46(3), 817-833 (2013)
    • (2013) Pattern Recogn. , vol.46 , Issue.3 , pp. 817-833
    • Kocev, D.1    Vens, C.2    Struyf, J.3    Džeroski, S.4
  • 7
    • 52949141834 scopus 로고    scopus 로고
    • Decision trees for hierarchical multi-label classification
    • Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2), 185-214 (2008)
    • (2008) Mach. Learn. , vol.73 , Issue.2 , pp. 185-214
    • Vens, C.1    Struyf, J.2    Schietgat, L.3    Džeroski, S.4    Blockeel, H.5
  • 9
    • 0343391218 scopus 로고    scopus 로고
    • Predicting chemical parameters of river water quality from bioindicator data
    • Džeroski, S., Demšar, D., Grbović, J.: Predicting chemical parameters of river water quality from bioindicator data. Appl. Intell. 13(1), 7-17 (2000)
    • (2000) Appl. Intell. , vol.13 , Issue.1 , pp. 7-17
    • Džeroski, S.1    Demšar, D.2    Grbović, J.3
  • 11
    • 22944464423 scopus 로고    scopus 로고
    • The enron corpus: A new dataset for email classification research
    • Machine Learning: ECML 2004 - 15th European Conference on Machine Learning
    • Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217-226. Springer, Heidelberg (2004) (Pubitemid 41050094)
    • (2004) Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) , vol.3201 , pp. 217-226
    • Klimt, B.1    Yang, Y.2
  • 12
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361-397 (2004)
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 13
    • 0141496153 scopus 로고    scopus 로고
    • Efficient algorithms for decision tree cross-validation
    • Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation. J. Mach. Learn. Res. 3, 621-650 (2002)
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 621-650
    • Blockeel, H.1    Struyf, J.2
  • 15
    • 77949701475 scopus 로고    scopus 로고
    • Finding explained groups of time-course gene expression profiles with predictive clustering trees
    • Slavkov, I., Gjorgjioski, V., Struyf, J., Džeroski, S.: Finding explained groups of time-course gene expression profiles with predictive clustering trees. Mol. BioSyst. 6(4), 729-740 (2010)
    • (2010) Mol. BioSyst. , vol.6 , Issue.4 , pp. 729-740
    • Slavkov, I.1    Gjorgjioski, V.2    Struyf, J.3    Džeroski, S.4
  • 17
    • 70549096553 scopus 로고    scopus 로고
    • Machine learning applications in habitat suitability modeling
    • Haupt, S.E., Pasini, A., Marzban, C. (eds.) Springer, Berlin
    • Džeroski, S.: Machine learning applications in habitat suitability modeling. In: Haupt, S.E., Pasini, A., Marzban, C. (eds.) Artificial Intelligence Methods in the Environmental Sciences, pp. 397-412. Springer, Berlin (2009)
    • (2009) Artificial Intelligence Methods in the Environmental Sciences , pp. 397-412
    • Džeroski, S.1
  • 19
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1-30 (2006)
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.