-
1
-
-
84055222005
-
Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
-
G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition," IEEE Trans, on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 30-2, 2012.
-
(2012)
IEEE Trans, on Audio, Speech, and Language Processing
, vol.20
, Issue.1
, pp. 30-32
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
2
-
-
84865801985
-
Conversational speech transcription using context-depedent deep neural networks
-
F. Seide, G. Li, and D. Yu, "Conversational speech transcription using context-depedent deep neural networks," in Proc. InterSpeech, pp. 437-40, 2011.
-
(2011)
Proc. InterSpeech
, pp. 437-440
-
-
Seide, F.1
Li, G.2
Yu, D.3
-
3
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," Signal Processing Magazine, IEEE, vol. 29, no. 6, pp. 82-97,2012.
-
(2012)
Signal Processing Magazine, IEEE
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.10
Kingsbury, B.11
-
4
-
-
0033708106
-
Speech Parameter generation algorithms for HMM-based speech synthesis
-
K. Tokuda, T. Kobayashi, T. Masuko, T. Kobayashi, and T. Kitamura, "Speech Parameter generation algorithms for HMM-based speech synthesis", InProc. ICASSP, pp. 1315-1318,2000.
-
(2000)
Proc. ICASSP
, pp. 1315-1318
-
-
Tokuda, K.1
Kobayashi, T.2
Masuko, T.3
Kobayashi, T.4
Kitamura, T.5
-
5
-
-
67651002140
-
Statistical parametric speech synthesis
-
H. Zen, K. Tokuda, and W. Black, Alan, "Statistical parametric speech synthesis", Speech Communication, Volume 51, Issue 11, pp. 1039-1064,2009.
-
(2009)
Speech Communication
, vol.51
, Issue.11
, pp. 1039-1064
-
-
Zen, H.1
Tokuda, K.2
Alan, W.B.3
-
6
-
-
84890490547
-
Statistical parametric speech synthesis using deep neural networks
-
H. Zen, A. Senior and M. Senior, "Statistical Parametric Speech Synthesis Using Deep Neural Networks", InProc. ICASSP, pp. 8012-8016,2013.
-
(2013)
Proc. ICASSP
, pp. 8012-8016
-
-
Zen, H.1
Senior, A.2
Senior, M.3
-
7
-
-
84929157442
-
Combining a vector space representation of linguistic context with a deep neural network for text-to-speech synthesis
-
H. Lu, S. King, and O. Watts, "Combining a vector space representation of linguistic context with a deep neural network for text-to-speech synthesis", In 8th ISCA Workshop on Speech Synthesis, pp. 281-285,2013.
-
(2013)
8th ISCA Workshop on Speech Synthesis
, pp. 281-285
-
-
Lu, H.1
King, S.2
Watts, O.3
-
8
-
-
84890527090
-
Multi-distribution deep belief network for speech synthesis
-
S. Kang, X. Qian, and H. Meng, "Multi-distribution deep belief network for speech synthesis", In Proc. ICASSP, pp. 7962-7966, 2013.
-
(2013)
Proc. ICASSP
, pp. 7962-7966
-
-
Kang, S.1
Qian, X.2
Meng, H.3
-
9
-
-
84890447002
-
Modeling spectral envelopes using restricted Boltzmann machines for statistical parametric speech synthesis
-
Z.-H. Ling, L. Deng, and D. Yu, "Modeling spectral envelopes using restricted Boltzmann machines for statistical parametric speech synthesis", InProc. ICASSP, pp. 7825-7829,2013.
-
(2013)
Proc. ICASSP
, pp. 7825-7829
-
-
Ling, Z.-H.1
Deng, L.2
Yu, D.3
-
10
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G.E. Hinton, S. Osindero and Y. W. Teh, "A Fast Learning Algorithm for Deep Belief Nets," Neural Computation, vol. 18, no. 7, pp. 1527-1554,2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
11
-
-
0022471098
-
Learning representations by back-propagating errors
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, no. 9, pp. 533-536, 1986.
-
(1986)
Nature
, vol.323
, Issue.9
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
12
-
-
0000029122
-
A simple weight decay can improve generalization
-
J.E. Moody, S.J. Hanson and P.R. Lippmann, eds. Morgan Kauffmann Publishers, San Mateo CA
-
A. Krogh and J. A. Hertz, "A Simple Weight Decay Can Improve Generalization", in Advance in Neural Information Processing Systems-4, J.E. Moody, S.J. Hanson and P.R. Lippmann, eds. Morgan Kauffmann Publishers, San Mateo CA, pp. 950-957, 1992.
-
(1992)
Advance in Neural Information Processing Systems
, vol.4
, pp. 950-957
-
-
Krogh, A.1
Hertz, J.A.2
-
13
-
-
0003573244
-
-
Kluwer Academic Publishers, Norwell, MA, USA
-
H. Bourlard and N. Morgan, Connectionist Speech Recognition: A Hybrid Approach, Kluwer Academic Publishers, Norwell, MA, USA, 1993.
-
(1993)
Connectionist Speech Recognition: A Hybrid Approach
-
-
Bourlard, H.1
Morgan, N.2
-
14
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol, P. Vincent, and S. Bengio, "Why does unsupervised pre-training help deep learning," JMLR, 2010.
-
(2010)
JMLR
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.A.4
Vincent, P.5
Bengio, S.6
-
15
-
-
84055163920
-
Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition
-
D. Yu, L. Deng, and G. Dahl, "Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition," in NIPS Workshop, 2010.
-
(2010)
NIPS Workshop
-
-
Yu, D.1
Deng, L.2
Dahl, G.3
-
16
-
-
84890453097
-
Feature engineering in context-dependent deep neural networks for conversational speech transcription
-
F. Seide, G. Li, X. Chen, and D. Yu, "Feature engineering in context-dependent deep neural networks for conversational speech transcription," in IEEE ASRU, 2011.
-
(2011)
IEEE ASRU
-
-
Seide, F.1
Li, G.2
Chen, X.3
Yu, D.4
-
17
-
-
84890455972
-
Making deep belief networks effective for large vocabulary continuous speech recognition
-
T.N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. Novak, and A.R. Mohamed, "Making deep belief networks effective for large vocabulary continuous speech recognition," in IEEE ASRU, 2011
-
(2011)
IEEE ASRU
-
-
Sainath, T.N.1
Kingsbury, B.2
Ramabhadran, B.3
Fousek, P.4
Novak, P.5
Mohamed, A.R.6
-
18
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," Foundations and Trends in Machine Learning, vol. 2, no. 1, pp. 1-127,2009.
-
(2009)
Foundations and Trends in Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
19
-
-
33846429403
-
Minimum generation error training for HMM-based speech synthesis
-
Y.-J. Wu and R.H. Wang, "Minimum generation error training for HMM-based speech synthesis", In Proc. ICASSP, 2006.
-
(2006)
Proc. ICASSP
-
-
Wu, Y.-J.1
Wang, R.H.2
-
20
-
-
84905283451
-
New methods in continuous Mandarin speech recognition
-
ISCA
-
C. Julian Chen, Ramesh A. Gopinath, Michael D. Monkowski, Michael A. Picheny, and Katherine Shen, "New methods in continuous Mandarin speech recognition.," in EUROSPEECH. 1997, ISCA.
-
(1997)
EUROSPEECH
-
-
Julian Chen, C.1
Gopinath, R.A.2
Monkowski, M.D.3
Picheny, M.A.4
Shen, K.5
-
21
-
-
67650851754
-
USTC system for blizzard challenge 2006 an improved hmm-based speech synthesis method
-
Z.-H. Ling, Y.-J. Wu, Y.-P. Wang, L. Qin, and R.-H. Wang, "USTC System for Blizzard Challenge 2006 an Improved HMM-based Speech Synthesis Method," Proc. Blizzard Challenge 2006 Workshop, 2006.
-
(2006)
Proc. Blizzard Challenge 2006 Workshop
-
-
Ling, Z.-H.1
Wu, Y.-J.2
Wang, Y.-P.3
Qin, L.4
Wang, R.-H.5
-
22
-
-
0033906251
-
MDL-based Context-Dependent sub-word modeling for speech recognition
-
K. Shinoda, and T. Watanable, "MDL-based Context-Dependent Sub-word Modeling for Speech Recognition", J. Acoust. Soc. Jpn(E), vol.21, no.2, pp.79-86,2000.
-
(2000)
J. Acoust. Soc. Jpn(E)
, vol.21
, Issue.2
, pp. 79-86
-
-
Shinoda, K.1
Watanable, T.2
|