메뉴 건너뛰기




Volumn 26, Issue 13, 2014, Pages 2122-2133

Calibrating building energy models using supercomputer trained machine learning agents

Author keywords

big data; building energy modeling; calibration; machine learning; parametric ensemble; supercomputer

Indexed keywords

BIG DATA; BOUNDARY ELEMENT METHOD; BUILDINGS; CALIBRATION; COST EFFECTIVENESS; INTELLIGENT AGENTS; LEARNING SYSTEMS; MACHINE LEARNING; SUPERCOMPUTERS;

EID: 84905014200     PISSN: 15320626     EISSN: 15320634     Source Type: Journal    
DOI: 10.1002/cpe.3267     Document Type: Conference Paper
Times cited : (22)

References (18)
  • 1
    • 84858067620 scopus 로고    scopus 로고
    • U.S. Dept. of Energy. D&R International, Ltd.: Silver Spring, MD
    • U.S. Dept. of Energy. Building Energy Data Book. D&R International, Ltd.: Silver Spring, MD, 2010.
    • (2010) Building Energy Data Book
  • 2
    • 84858067620 scopus 로고    scopus 로고
    • U.S. Dept. of Energy. D&R International, Ltd.: Silver Spring, MD
    • U.S. Dept. of Energy. Building Energy Data Book. D&R International, Ltd.: Silver Spring, MD, 2011.
    • (2011) Building Energy Data Book
  • 3
    • 0038004463 scopus 로고    scopus 로고
    • Climate classification for building energy codes and standards: Part 1-development process
    • Briggs RS, Lucas RG, Taylor ZT,. Climate classification for building energy codes and standards: part 1-development process. ASHRAE Transactions 2003; 109 (1): 109-121.
    • (2003) ASHRAE Transactions , vol.109 , Issue.1 , pp. 109-121
    • Briggs, R.S.1    Lucas, R.G.2    Taylor, Z.T.3
  • 4
    • 0038342437 scopus 로고    scopus 로고
    • Climate classification for building energy codes and standards: Part 2-zone definitions, maps, and comparisons
    • Briggs RS, Lucas RG, Taylor ZT,. Climate classification for building energy codes and standards: part 2-zone definitions, maps, and comparisons. ASHRAE Transactions 2003; 109 (1): 122-130.
    • (2003) ASHRAE Transactions , vol.109 , Issue.1 , pp. 122-130
    • Briggs, R.S.1    Lucas, R.G.2    Taylor, Z.T.3
  • 6
    • 84905057396 scopus 로고    scopus 로고
    • IECC 2009 and ASHRAE 90.1-2007
    • IECC 2009 and ASHRAE 90.1-2007. Energy code climate zones, 2009.
    • (2009) Energy Code Climate Zones
  • 16
    • 84861802647 scopus 로고    scopus 로고
    • Predicting future hourly residential electrical consumption: A machine learning case study
    • Edwards RE, New JR, Parker LE,. Predicting future hourly residential electrical consumption: a machine learning case study. Energy and Buildings 2012; 49: 591-603.
    • (2012) Energy and Buildings , vol.49 , pp. 591-603
    • Edwards, R.E.1    New, J.R.2    Parker, L.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.