메뉴 건너뛰기




Volumn , Issue , 2013, Pages 31-38

Estimating building simulation parameters via Bayesian structure learning

Author keywords

Big Data; Probabilistic Inference; Structure Learning

Indexed keywords

ARCHITECTURAL DESIGN; ARTIFICIAL INTELLIGENCE; ENGINES;

EID: 84890583221     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2501221.2501226     Document Type: Conference Paper
Times cited : (2)

References (27)
  • 3
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends R in Machine Learning, 3(1):1{122, 2011.
    • (2011) Foundations and Trends R in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 4
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of bayesian-network structures
    • D. Chickering. Learning equivalence classes of bayesian-network structures. The Journal of Machine Learning Research, 2:445{498, 2002.
    • (2002) The Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.1
  • 6
    • 70450265503 scopus 로고    scopus 로고
    • Optimized cutting plane algorithm for large-scale risk minimization
    • V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for large-scale risk minimization. The Journal of Machine Learning Research, 10:2157{2192, 2009.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 2157-2192
    • Franc, V.1    Sonnenburg, S.2
  • 7
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432{441, 2008.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 8
    • 0002219642 scopus 로고    scopus 로고
    • Learning bayesian network structure from massive datasets: The Òsparse candidateÓ algorithm background: Learning structure
    • N. Friedman. Learning bayesian network structure from massive datasets: The Òsparse candidateÓ algorithm background: Learning structure. Science, pages 206{215, 1999.
    • (1999) Science , pp. 206-215
    • Friedman, N.1
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine learning, 46(1):389{422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 13
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models. Machine learning, 37(2):183{233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 22
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):461{464, 1978.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 24
    • 56449094547 scopus 로고    scopus 로고
    • A scalable modular convex solver for regularized risk minimization
    • ACM
    • C. H. Teo, Q. Le, A. Smola, and S. V. N. Vishwanathan. A scalable modular convex solver for regularized risk minimization. In In KDD. ACM, 2007.
    • (2007) KDD
    • Teo, C.H.1    Le, Q.2    Smola, A.3    Vishwanathan, S.V.N.4
  • 26
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing bayesian network structure learning algorithm
    • I. Tsamardinos, L. Brown, and C. Aliferis. The max-min hill-climbing bayesian network structure learning algorithm. Machine learning, 65(1):31{78, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.2    Aliferis, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.