메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Supercomputer assisted generation of machine learning agents for the calibration of building energy models

Author keywords

Big data; Building energy modeling; Calibration; Machine learning; Parametric ensemble; Supercomputer

Indexed keywords

BIG DATUM; BUILDING ENERGY MODEL; BUILDING STOCKS; COMPUTATIONAL PROBLEM; DEPARTMENT OF ENERGY; MACHINE LEARNING AGENTS; PARAMETRIC ENSEMBLE; PARAMETRIC SPACES;

EID: 84882441265     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2484762.2484818     Document Type: Conference Paper
Times cited : (4)

References (19)
  • 2
    • 0038004463 scopus 로고    scopus 로고
    • Climate classification for building energy codes and standards: Part 1-development process
    • Briggs, R., Lucas, R., and Taylor, Z. Climate classification for building energy codes and standards: Part 1-development process. ASHRAE Transactions 109, 1 (2003), 109-121.
    • (2003) ASHRAE Transactions , vol.109 , Issue.1 , pp. 109-121
    • Briggs, R.1    Lucas, R.2    Taylor, Z.3
  • 3
    • 0038342437 scopus 로고    scopus 로고
    • Climate classification for building energy codes and standards: Part 2-zone definitions, maps, and comparisons
    • Briggs, R., Lucas, R., and Taylor, Z. Climate classification for building energy codes and standards: Part 2-zone definitions, maps, and comparisons. ASHRAE Transactions 109, 1 (2003), 122-130.
    • (2003) ASHRAE Transactions , vol.109 , Issue.1 , pp. 122-130
    • Briggs, R.1    Lucas, R.2    Taylor, Z.3
  • 5
    • 84897719264 scopus 로고    scopus 로고
    • Autonomous correction of sensor data applied to building technologies utilizing statistical processing methods
    • Castello, C. C., and New, J. R. Autonomous correction of sensor data applied to building technologies utilizing statistical processing methods. 2nd Energy Informatics Conference (2012).
    • (2012) 2nd Energy Informatics Conference
    • Castello, C.C.1    New, J.R.2
  • 8
    • 84861802647 scopus 로고    scopus 로고
    • Predicting future hourly residential electrical consumption: A machine learning case study
    • Edwards, R. E., New, J. R., and Parker, L. Predicting future hourly residential electrical consumption: A machine learning case study. Buildings and Energy (2012).
    • (2012) Buildings and Energy
    • Edwards, R.E.1    New, J.R.2    Parker, L.3
  • 9
    • 84882343456 scopus 로고    scopus 로고
    • Constructing large scale energyplus surrogates from large data
    • Edwards, R. E., New, J. R., and Parker, L. Constructing large scale energyplus surrogates from large data. Buildings and Energy (2014).
    • (2014) Buildings and Energy
    • Edwards, R.E.1    New, J.R.2    Parker, L.3
  • 14
    • 84882300933 scopus 로고    scopus 로고
    • Evolutionary tuning of building models to monthly electrical consumption
    • Garrett, A., New, J. R., and Chandler, T. Evolutionary tuning of building models to monthly electrical consumption. ASHRAE Annual Conference (2014).
    • (2014) ASHRAE Annual Conference
    • Garrett, A.1    New, J.R.2    Chandler, T.3
  • 15
    • 84882404828 scopus 로고    scopus 로고
    • IECC 2009 and ASHRAE 90.1-2007
    • IECC 2009 and ASHRAE 90.1-2007. Energy Code Climate Zones.
    • Energy Code Climate Zones
  • 18
    • 84858067620 scopus 로고    scopus 로고
    • U.S. Dept. of Energy, D&R International, Ltd
    • U.S. Dept. of Energy. Building Energy Data Book. D&R International, Ltd., 2010.
    • (2010) Building Energy Data Book
  • 19
    • 84858067620 scopus 로고    scopus 로고
    • U.S. Dept. of Energy, D&R International, Ltd
    • U.S. Dept. of Energy. Building Energy Data Book. D&R International, Ltd., 2011.
    • (2011) Building Energy Data Book


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.