메뉴 건너뛰기




Volumn 64, Issue 1-4 SPEC. ISS., 2005, Pages 253-270

New globally convergent training scheme based on the resilient propagation algorithm

Author keywords

Batch learning; Convergence analysis; First order training algorithms; Global convergence property; IRprop; Rprop; Supervised learning

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; CONVERGENCE OF NUMERICAL METHODS; ITERATIVE METHODS;

EID: 15844401040     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2004.11.016     Document Type: Article
Times cited : (133)

References (28)
  • 1
    • 21144455008 scopus 로고    scopus 로고
    • Classification of protein localisation patterns via supervised neural network learning
    • Proceedings of the Fifth Symposium on Intelligent Data Analysis (IDA-03) Berlin, Germany, August Springer, Berlin
    • A.D. Anastasiadis, G.D. Magoulas, X. Liu, Classification of protein localisation patterns via supervised neural network learning, in: Proceedings of the Fifth Symposium on Intelligent Data Analysis (IDA-03), Berlin, Germany, August 2003, Lecture Notes in Computer Science, vol. 2810, Springer, Berlin, pp. 430-439.
    • (2003) Lecture Notes in Computer Science , vol.2810 , pp. 430-439
    • Anastasiadis, A.D.1    Magoulas, G.D.2    Liu, X.3
  • 2
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: Between steepest descent and Newton's method
    • R. Battiti First- and second-order methods for learning: Between steepest descent and Newton's method Neural Comput. 4 1992 141-166
    • (1992) Neural Comput. , vol.4 , pp. 141-166
    • Battiti, R.1
  • 6
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M.T. Hagan M.B. Menhaj Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural Networks 5 1994 989-993
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 7
    • 0141466859 scopus 로고    scopus 로고
    • Better prediction of protein cellular localization sites with the k nearest neighbors classifier
    • P. Horton, K. Nakai, Better prediction of protein cellular localization sites with the k nearest neighbors classifier, in: Proceedings of Intelligent Systems in Molecular Biology, 1997, pp. 368-383.
    • (1997) Proceedings of Intelligent Systems in Molecular Biology , pp. 368-383
    • Horton, P.1    Nakai, K.2
  • 8
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved Rprop learning algorithms
    • C. Igel M. Husken Empirical evaluation of the improved Rprop learning algorithms Neurocomputing 50 2003 105-123
    • (2003) Neurocomputing , vol.50 , pp. 105-123
    • Igel, C.1    Husken, M.2
  • 9
    • 0036358890 scopus 로고    scopus 로고
    • Physiological genomics of Escherichia coli protein families
    • P. Liang B. Labedan M. Riley Physiological genomics of Escherichia coli protein families Physiol. Genomics 9 1 2002 15-26
    • (2002) Physiol. Genomics , vol.9 , Issue.1 , pp. 15-26
    • Liang, P.1    Labedan, B.2    Riley, M.3
  • 12
    • 0033209687 scopus 로고    scopus 로고
    • Improving the convergence of the backpropagation algorithm using learning rate adaptation methods
    • G.D. Magoulas M.N. Vrahatis G.S. Androulakis Improving the convergence of the backpropagation algorithm using learning rate adaptation methods Neural Comput. 11 1999 1769-1796
    • (1999) Neural Comput. , vol.11 , pp. 1769-1796
    • Magoulas, G.D.1    Vrahatis, M.N.2    Androulakis, G.S.3
  • 13
    • 0027205884 scopus 로고
    • A scaled conjugated gradient algorithm for fast supervised learning
    • M.F. Moller A scaled conjugated gradient algorithm for fast supervised learning Neural Networks 6 1993 525-533
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 14
    • 0003408496 scopus 로고
    • UCI Repository of machine learning databases
    • University of California, Irvine, CA
    • P.M. Murphy, D.W. Aha, UCI Repository of machine learning databases, University of California, Irvine, CA, 1994. http://www.ics.uci.edu/mlearn/MLRepository.html.
    • (1994)
    • Murphy, P.M.1    Aha, D.W.2
  • 15
    • 0025933503 scopus 로고
    • Expert system for predicting protein localization sites in gram-negative bacteria
    • K. Nakai M. Kanehisa Expert system for predicting protein localization sites in gram-negative bacteria PROTEINS: Structure, Function, and Genetics 11 1991 95-110
    • (1991) PROTEINS: Structure, Function, and Genetics , vol.11 , pp. 95-110
    • Nakai, K.1    Kanehisa, M.2
  • 16
    • 0027105007 scopus 로고
    • A knowledge base for predicting protein localization sites in eukaryotic cells
    • K. Nakai M. Kanehisa A knowledge base for predicting protein localization sites in eukaryotic cells Genomics 14 1992 897-911
    • (1992) Genomics , vol.14 , pp. 897-911
    • Nakai, K.1    Kanehisa, M.2
  • 17
    • 84972047841 scopus 로고
    • Theory of algorithms for unconstrained optimization
    • J. Nocedal, Theory of algorithms for unconstrained optimization, Acta Numer. (1992) 199-242.
    • (1992) Acta Numer. , pp. 199-242
    • Nocedal, J.1
  • 18
    • 0034331225 scopus 로고    scopus 로고
    • Target detection through image processing and resilient propagation algorithms
    • L.M. Patnaik K. Rajan Target detection through image processing and resilient propagation algorithms Neurocomputing 35 1-4 2000 123-135
    • (2000) Neurocomputing , vol.35 , Issue.1-4 , pp. 123-135
    • Patnaik, L.M.1    Rajan, K.2
  • 20
    • 0004114283 scopus 로고
    • PROBEN1-A set of benchmarks and benchmarking rules for neural network training algorithms
    • Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe
    • L. Prechelt, PROBEN1-A set of benchmarks and benchmarking rules for neural network training algorithms, Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, 1994.
    • (1994)
    • Prechelt, L.1
  • 23
    • 0032122764 scopus 로고    scopus 로고
    • Simulated annealing and weight decay in adaptive learning: The SARPROP algorithm
    • N.K. Treadgold T.D. Gedeon Simulated annealing and weight decay in adaptive learning: The SARPROP algorithm IEEE Trans. Neural Networks 9 4 1998 662-668
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.4 , pp. 662-668
    • Treadgold, N.K.1    Gedeon, T.D.2
  • 24
    • 0035425122 scopus 로고    scopus 로고
    • A genomic view of yeast membrane transporters
    • D. Van Belle B. Andre A genomic view of yeast membrane transporters Curr. Opin. Cell Biol. 13 4 2001 389-398
    • (2001) Curr. Opin. Cell Biol. , vol.13 , Issue.4 , pp. 389-398
    • Van Belle, D.1    Andre, B.2
  • 27
    • 0014492147 scopus 로고
    • Convergence conditions for ascent methods
    • P. Wolfe Convergence conditions for ascent methods SIAM Rev. 11 1969 226-235
    • (1969) SIAM Rev. , vol.11 , pp. 226-235
    • Wolfe, P.1
  • 28
    • 0001796942 scopus 로고
    • Convergence conditions for ascent methods. II: Some corrections
    • P. Wolfe Convergence conditions for ascent methods. II: Some corrections SIAM Rev. 13 1971 185-188
    • (1971) SIAM Rev. , vol.13 , pp. 185-188
    • Wolfe, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.