메뉴 건너뛰기




Volumn 87, Issue , 2014, Pages 1-9

Modeling the impact of in-cylinder combustion parameters of di engines on soot and NOx emissions at rated EGR levels using ANN approach

Author keywords

ANN; EGR; In cylinder combustion; NOx; Soot

Indexed keywords

COMBUSTION CHAMBERS; KINETICS; NEURAL NETWORKS; NITROGEN OXIDES; SOOT; TOPOLOGY;

EID: 84904750159     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2014.07.005     Document Type: Article
Times cited : (40)

References (25)
  • 1
    • 84897696421 scopus 로고    scopus 로고
    • Exhaust emissions prognostication for di diesel group-hole injectors using a supervised artificial neural network approach
    • H. Taghavifar, H. Taghavifar, A. Mardani, and A. Mohebbi Exhaust emissions prognostication for DI diesel group-hole injectors using a supervised artificial neural network approach Fuel 125 2014 81 89
    • (2014) Fuel , vol.125 , pp. 81-89
    • Taghavifar, H.1    Taghavifar, H.2    Mardani, A.3    Mohebbi, A.4
  • 2
    • 84862732764 scopus 로고    scopus 로고
    • Influences of pilot injection and exhaust gas recirculation (EGR) on combustion and emissions in a HCCI-DI combustion engine
    • Q. Fang, J. Fang, J. Zhuang, and Z. Huang Influences of pilot injection and exhaust gas recirculation (EGR) on combustion and emissions in a HCCI-DI combustion engine Appl Therm Eng 48 2012 97 104
    • (2012) Appl Therm Eng , vol.48 , pp. 97-104
    • Fang, Q.1    Fang, J.2    Zhuang, J.3    Huang, Z.4
  • 3
    • 84857233826 scopus 로고    scopus 로고
    • Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling
    • R. Mobasheri, Z. Peng, and S.M. Mirsalim Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling Int J Heat Fluid Flow 33 1 2012 59 69
    • (2012) Int J Heat Fluid Flow , vol.33 , Issue.1 , pp. 59-69
    • Mobasheri, R.1    Peng, Z.2    Mirsalim, S.M.3
  • 4
    • 80052262919 scopus 로고    scopus 로고
    • The influence of Exhaust Gas Recirculation (EGR) on combustion and emissions of n-heptane/natural gas fueled Homogeneous Charge Compression Ignition (HCCI) engines
    • M. Fathi, R.K. Saray, and M.D. Checkel The influence of Exhaust Gas Recirculation (EGR) on combustion and emissions of n-heptane/natural gas fueled Homogeneous Charge Compression Ignition (HCCI) engines Appl Energy 88 12 2011 4719 4724
    • (2011) Appl Energy , vol.88 , Issue.12 , pp. 4719-4724
    • Fathi, M.1    Saray, R.K.2    Checkel, M.D.3
  • 5
    • 84891588947 scopus 로고    scopus 로고
    • Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact
    • Z. Chen, Z. Wu, J. Liu, and C. Lee Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact Energy Convers Manage 78 2014 787 795
    • (2014) Energy Convers Manage , vol.78 , pp. 787-795
    • Chen, Z.1    Wu, Z.2    Liu, J.3    Lee, C.4
  • 6
    • 84893368826 scopus 로고    scopus 로고
    • Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network
    • S. Roy, R. Banerjee, and P.K. Bose Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network Appl Energy 119 2014 330 340
    • (2014) Appl Energy , vol.119 , pp. 330-340
    • Roy, S.1    Banerjee, R.2    Bose, P.K.3
  • 7
    • 79952446940 scopus 로고    scopus 로고
    • Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings
    • S.P.P. Shivakumar, and R.B.R. Shrinivasa Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings Appl Energy 88 2011 2344 2354
    • (2011) Appl Energy , vol.88 , pp. 2344-2354
    • Shivakumar, S.P.P.1    Shrinivasa, R.B.R.2
  • 8
    • 84856393468 scopus 로고    scopus 로고
    • Prediction of engine performance for an alternative fuel using artificial neural network
    • Y. Çay, A. Çiçek, F. Kara, and S. Saǧiroǧlu Prediction of engine performance for an alternative fuel using artificial neural network Appl Therm Eng 37 2012 217 225
    • (2012) Appl Therm Eng , vol.37 , pp. 217-225
    • Çay, Y.1    Çiçek, A.2    Kara, F.3    Saǧiroǧlu, S.4
  • 9
    • 58949083686 scopus 로고    scopus 로고
    • Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network
    • G. Najafi, B. Ghobadian, T. Tavakoli, D.R. Buttsworth, T.F. Yusaf, and M. Faizollahnejad Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network Appl Energy 86 2009 630 639
    • (2009) Appl Energy , vol.86 , pp. 630-639
    • Najafi, G.1    Ghobadian, B.2    Tavakoli, T.3    Buttsworth, D.R.4    Yusaf, T.F.5    Faizollahnejad, M.6
  • 10
    • 56049096202 scopus 로고    scopus 로고
    • Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network
    • B. Ghobadian, H. Rahimi, A.M. Nikbakht, G. Najafi, and T.F. Yusaf Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network Renew Energy 34 2009 976 982
    • (2009) Renew Energy , vol.34 , pp. 976-982
    • Ghobadian, B.1    Rahimi, H.2    Nikbakht, A.M.3    Najafi, G.4    Yusaf, T.F.5
  • 11
    • 35448944865 scopus 로고    scopus 로고
    • Combustion analysis of a CI engine performance using waste cooking biodiesel fuel with an artificial neural network aid
    • G. Najafi, B. Ghobadian, T.F. Yusaf, and H. Rahimi Combustion analysis of a CI engine performance using waste cooking biodiesel fuel with an artificial neural network aid Am J Appl Sci 4 2007 759 767
    • (2007) Am J Appl Sci , vol.4 , pp. 759-767
    • Najafi, G.1    Ghobadian, B.2    Yusaf, T.F.3    Rahimi, H.4
  • 12
    • 75149120102 scopus 로고    scopus 로고
    • CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network
    • T.F. Yusaf, D.R. Buttsworth, K.H. Saleh, and B.F. Yousif CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network Appl Energy 87 2010 1661 1669
    • (2010) Appl Energy , vol.87 , pp. 1661-1669
    • Yusaf, T.F.1    Buttsworth, D.R.2    Saleh, K.H.3    Yousif, B.F.4
  • 15
    • 2242465834 scopus 로고    scopus 로고
    • An experimental study of the application of variable-geometry turbocharging and high-pressure common rail to an automotive diesel engine
    • J.G. Hawley, F.J. Wallace, A. Cox, B. Cumming, and G. Capon An experimental study of the application of variable-geometry turbocharging and high-pressure common rail to an automotive diesel engine J Inst Energy 74 501 2001 124 133 (Pubitemid 33701223)
    • (2001) Journal of the Institute of Energy , vol.74 , Issue.501 , pp. 124-133
    • Hawley, J.G.1    Wallace, F.J.2    Cox, A.3    Cumming, B.4    Capon, G.5
  • 17
    • 84904766547 scopus 로고    scopus 로고
    • AVL, version 8.5
    • Fire Software help, AVL, version 8.5; 2005.
    • (2005) Fire Software Help
  • 18
    • 13844275723 scopus 로고    scopus 로고
    • The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion
    • O. Colin, and A. Benkenida The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion Oil Gas Sci Technol Rev IFP 59 6 2004 593 609
    • (2004) Oil Gas Sci Technol Rev IFP , vol.59 , Issue.6 , pp. 593-609
    • Colin, O.1    Benkenida, A.2
  • 19
    • 0000345819 scopus 로고
    • Modeling atomization processes in high-pressure vaporizing sprays
    • R.D. Reitz Modeling atomization processes in high-pressure vaporizing sprays Atomization Spray Technol 3 1987 309 337
    • (1987) Atomization Spray Technol , vol.3 , pp. 309-337
    • Reitz, R.D.1
  • 20
    • 85088545439 scopus 로고
    • Aspects of computer simulation of liquid-fueled combustors
    • A.D. Gosman, and E. Ioannides Aspects of computer simulation of liquid-fueled combustors AIAA 1981 81 323
    • (1981) AIAA , pp. 81-323
    • Gosman, A.D.1    Ioannides, E.2
  • 21
    • 85072477522 scopus 로고    scopus 로고
    • Modeling the effect of engine speed on the combustion process and emissions in a di diesel engine
    • Uludogan A, Foster DE, Reitz RD. Modeling the effect of engine speed on the combustion process and emissions in a DI diesel engine. In: SAE paper 962056; 1996.
    • (1996) SAE Paper 962056
    • Uludogan, A.1    De, F.2    Reitz, R.D.3
  • 23
    • 23844494045 scopus 로고    scopus 로고
    • Neural network modelling and sensitivity analysis of a mechanical poultry catching system
    • DOI 10.1016/j.biosystemseng.2005.05.007, PII S153751100500098X
    • S. Jaiswal, E.R. Benson, J.C. Bernard, and G.L. Van Wicklen Neural network modeling and sensitivity analysis of a mechanical poultry catching system Biosyst Eng 92 2005 59 68 (Pubitemid 41161148)
    • (2005) Biosystems Engineering , vol.92 , Issue.1 , pp. 59-68
    • Jaiswal, S.1    Benson, E.R.2    Bernard, J.C.3    Van Wicklen, G.L.4
  • 24
    • 84898029886 scopus 로고    scopus 로고
    • Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices
    • H. Taghavifar, and A. Mardani Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices Energy 68 2014 651 657
    • (2014) Energy , vol.68 , pp. 651-657
    • Taghavifar, H.1    Mardani, A.2
  • 25
    • 84896395910 scopus 로고    scopus 로고
    • A comparative trend in forecasting ability of artificial neural networks and regressive support vector machine methodologies for energy dissipation modeling of off-road vehicles
    • H. Taghavifar, and A. Mardani A comparative trend in forecasting ability of artificial neural networks and regressive support vector machine methodologies for energy dissipation modeling of off-road vehicles Energy 66 2014 569 576
    • (2014) Energy , vol.66 , pp. 569-576
    • Taghavifar, H.1    Mardani, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.