메뉴 건너뛰기




Volumn 12, Issue 3, 2014, Pages 381-394

Identifying informative imaging biomarkers via tree structured sparse learning for AD diagnosis

Author keywords

Alzheimer's disease diagnosis; Biomarker identification; Group sparse learning; Mild cognitive impairment; Tree structured sparse learning

Indexed keywords

BIOLOGICAL MARKER;

EID: 84904747767     PISSN: 15392791     EISSN: None     Source Type: Journal    
DOI: 10.1007/s12021-013-9218-x     Document Type: Article
Times cited : (26)

References (50)
  • 1
    • 67651154137 scopus 로고    scopus 로고
    • White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients
    • 19376246 10.1016/j.neuroimage.2009.04.030
    • Chen, Y., An, H., Zhu, H., Stone, T., Smith, J. K., Hall, C., et al. (2009). White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. NeuroImage, 47(4), 1154-1162.
    • (2009) NeuroImage , vol.47 , Issue.4 , pp. 1154-1162
    • Chen, Y.1    An, H.2    Zhu, H.3    Stone, T.4    Smith, J.K.5    Hall, C.6
  • 2
    • 84862776712 scopus 로고    scopus 로고
    • Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
    • for the Alzheimer's Disease Neuroimaging Initiative 22166797 10.1016/j.neuroimage.2011.11.066
    • Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., Lin, C., & for the Alzheimer's Disease Neuroimaging Initiative. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60(1), 59-70.
    • (2012) NeuroImage , vol.60 , Issue.1 , pp. 59-70
    • Chu, C.1    Hsu, A.-L.2    Chou, K.-H.3    Bandettini, P.4    Lin, C.5
  • 3
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database
    • 10.1016/j.neuroimage.2010.06.013 20542124 10.1016/j.neuroimage.2010.06. 013
    • Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M. O., et al. (2011). Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56(2), 766-781. doi: 10.1016/j.neuroimage.2010.06. 013.
    • (2011) NeuroImage , vol.56 , Issue.2 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehericy, S.5    Habert, M.O.6
  • 4
    • 39749189507 scopus 로고    scopus 로고
    • Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging
    • 10.1016/j.neurobiolaging.2006.11.010 2323584 17174012 10.1016/j.neurobiolaging.2006.11.010
    • Davatzikos, C., Fan, Y., Wu, X., Shen, D., & Resnick, S. M. (2008a). Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging. Neurobiology of Aging, 29(4), 514-523. doi: 10.1016/j.neurobiolaging.2006.11.010.
    • (2008) Neurobiology of Aging , vol.29 , Issue.4 , pp. 514-523
    • Davatzikos, C.1    Fan, Y.2    Wu, X.3    Shen, D.4    Resnick, S.M.5
  • 5
    • 44649136049 scopus 로고    scopus 로고
    • Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
    • 10.1016/j.neuroimage.2008.03.050 1:STN:280:DC%2BD1czosVertw%3D%3D 2528893 18474436 10.1016/j.neuroimage.2008.03.050
    • Davatzikos, C., Resnick, S. M., Wu, X., Parmpi, P., & Clark, C. M. (2008b). Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage, 41(4), 1220-1227. doi: 10.1016/j.neuroimage. 2008.03.050.
    • (2008) NeuroImage , vol.41 , Issue.4 , pp. 1220-1227
    • Davatzikos, C.1    Resnick, S.M.2    Wu, X.3    Parmpi, P.4    Clark, C.M.5
  • 6
    • 80053654021 scopus 로고    scopus 로고
    • Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
    • Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., & Trojanowski, J. Q. (2010). Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging, 32(12), 2322.e2319-2322.e2327.
    • (2010) Neurobiology of Aging , vol.32 , Issue.12
    • Davatzikos, C.1    Bhatt, P.2    Shaw, L.M.3    Batmanghelich, K.N.4    Trojanowski, J.Q.5
  • 7
    • 67749133648 scopus 로고    scopus 로고
    • Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease
    • 2714061 19460794 10.1093/brain/awp123
    • Desikan, R. S., Cabral, H. J., Hess, C. P., Dillon, W. P., Glastonbury, C. M., Weiner, M. W., et al. (2009). Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease. Brain, 132(Pt 8), 2048-2057.
    • (2009) Brain , vol.132 , Issue.PART 8 , pp. 2048-2057
    • Desikan, R.S.1    Cabral, H.J.2    Hess, C.P.3    Dillon, W.P.4    Glastonbury, C.M.5    Weiner, M.W.6
  • 8
    • 67651020812 scopus 로고    scopus 로고
    • Relating one-year cognitive change in mild cognitive impairment to baseline MRI features
    • 19371783 10.1016/j.neuroimage.2009.04.023
    • Duchesne, S., Caroli, A., Geroldi, C., Collins, D. L., & Frisoni, G. B. (2009). Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. NeuroImage, 47(4), 1363-1370.
    • (2009) NeuroImage , vol.47 , Issue.4 , pp. 1363-1370
    • Duchesne, S.1    Caroli, A.2    Geroldi, C.3    Collins, D.L.4    Frisoni, G.B.5
  • 9
    • 34347251908 scopus 로고    scopus 로고
    • Multivariate examination of brain abnormality using both structural and functional MRI
    • 17512218 10.1016/j.neuroimage.2007.04.009
    • Fan, Y., Rao, H., Hurt, H., Giannetta, J., Korczykowski, M., Shera, D., et al. (2007a). Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage, 36(4), 1189-1199.
    • (2007) NeuroImage , vol.36 , Issue.4 , pp. 1189-1199
    • Fan, Y.1    Rao, H.2    Hurt, H.3    Giannetta, J.4    Korczykowski, M.5    Shera, D.6
  • 10
    • 33846264886 scopus 로고    scopus 로고
    • COMPARE: Classification of Morphological Patterns using Adaptive Regional Elements
    • 17243588 10.1109/TMI.2006.886812
    • Fan, Y., Shen, D., Gur, R. C., Gur, R. E., & Davatzikos, C. (2007b). COMPARE: Classification Of Morphological Patterns using Adaptive Regional Elements. IEEE Transactions on Medical Imaging, 26(1), 93-105.
    • (2007) IEEE Transactions on Medical Imaging , vol.26 , Issue.1 , pp. 93-105
    • Fan, Y.1    Shen, D.2    Gur, R.C.3    Gur, R.E.4    Davatzikos, C.5
  • 11
    • 79952067946 scopus 로고    scopus 로고
    • Semi-supervised pattern classification of medical images: Application to mild cognitive impairment (MCI)
    • 10.1016/j.neuroimage.2010.12.066 3049826 21195776 10.1016/j.neuroimage. 2010.12.066
    • Filipovych, R., & Davatzikos, C. (2011). Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI). NeuroImage, 55(3), 1109-1119. doi: 10.1016/j.neuroimage.2010.12.066.
    • (2011) NeuroImage , vol.55 , Issue.3 , pp. 1109-1119
    • Filipovych, R.1    Davatzikos, C.2
  • 12
    • 27744565003 scopus 로고    scopus 로고
    • Classification and selection of biomarkers in genomic data using LASSO
    • Ghosh, D., & Chinnaiyan, A. M. (2005). Classification and selection of biomarkers in genomic data using LASSO. Journal of Biomedicine and Biotechnology, 2005(2), 147-154.
    • (2005) Journal of Biomedicine and Biotechnology , vol.2005 , Issue.2 , pp. 147-154
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 13
    • 67949103436 scopus 로고    scopus 로고
    • Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
    • 2773131 19481161 10.1016/j.neuroimage.2009.05.056
    • Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., & Johnson, S. C. (2009). Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage, 48(1), 138-149.
    • (2009) NeuroImage , vol.48 , Issue.1 , pp. 138-149
    • Hinrichs, C.1    Singh, V.2    Mukherjee, L.3    Xu, G.4    Chung, M.K.5    Johnson, S.C.6
  • 14
    • 30444438344 scopus 로고    scopus 로고
    • Voxel-based morphometric comparison between early- and late-onset mild Alzheimer's disease and assessment of diagnostic performance of z score images
    • 15709131
    • Ishii, K., Kawachi, T., Sasaki, H., Kono, A. K., Fukuda, T., Kojima, Y., et al. (2005). Voxel-based morphometric comparison between early- and late-onset mild Alzheimer's disease and assessment of diagnostic performance of z score images. American Journal of Neuroradiology, 26(2), 333-340.
    • (2005) American Journal of Neuroradiology , vol.26 , Issue.2 , pp. 333-340
    • Ishii, K.1    Kawachi, T.2    Sasaki, H.3    Kono, A.K.4    Fukuda, T.5    Kojima, Y.6
  • 16
    • 77952419496 scopus 로고    scopus 로고
    • ABSORB: Atlas building by self-organized registration and bundling
    • Jia, H., Wu, G. Wang, Q., & Shen, D. (2010). ABSORB: Atlas building by self-organized registration and bundling. NeuroImage, 51(3), 1057-1070.
    • (2010) NeuroImage , vol.51 , Issue.3 , pp. 1057-1070
    • Jia, H.1    Wu Wang G, Q.2    Shen, D.3
  • 20
    • 39749191312 scopus 로고    scopus 로고
    • Automatic classification of MR scans in Alzheimer's disease
    • 2579744 18202106 10.1093/brain/awm319
    • Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., et al. (2008). Automatic classification of MR scans in Alzheimer's disease. Brain, 131(3), 681-689.
    • (2008) Brain , vol.131 , Issue.3 , pp. 681-689
    • Klöppel, S.1    Stonnington, C.M.2    Chu, C.3    Draganski, B.4    Scahill, R.I.5    Rohrer, J.D.6
  • 21
    • 1642574430 scopus 로고    scopus 로고
    • Morphological classification of brains via high-dimensional shape transformations and machine learning methods
    • 14741641 10.1016/j.neuroimage.2003.09.027
    • Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S. M., & Davatzikos, C. (2004). Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage, 21(1), 46-57.
    • (2004) NeuroImage , vol.21 , Issue.1 , pp. 46-57
    • Lao, Z.1    Shen, D.2    Xue, Z.3    Karacali, B.4    Resnick, S.M.5    Davatzikos, C.6
  • 23
    • 82755161873 scopus 로고    scopus 로고
    • Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features
    • e15-427. e30
    • Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., & Shen D. (2012). Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features. Neurobiology of aging, 33(2), 427. e15-427. e30.
    • (2012) Neurobiology of Aging , vol.33 , Issue.2 , pp. 427
    • Li, Y.1    Wang, Y.2    Wu, G.3    Shi, F.4    Zhou, L.5    Lin, W.6    Shen, D.7
  • 24
    • 85161968806 scopus 로고    scopus 로고
    • Moreau-Yosida regularization for grouped tree structure learning
    • Liu, J., & Ye, J. (2010). Moreau-Yosida regularization for grouped tree structure learning. Advances in Neural Information Processing Systems, 23, 1459-1467.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 1459-1467
    • Liu, J.1    Ye, J.2
  • 25
    • 84862778147 scopus 로고    scopus 로고
    • Ensemble sparse classification of Alzheimer's disease
    • 10.1016/j.neuroimage.2012.01.055 3303950 22270352 10.1016/j.neuroimage. 2012.01.055
    • Liu, M., Zhang, D., & Shen, D. (2012a). Ensemble sparse classification of Alzheimer's disease. NeuroImage, 60(2), 1106-1116. doi: 10.1016/j.neuroimage.2012.01.055.
    • (2012) NeuroImage , vol.60 , Issue.2 , pp. 1106-1116
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 26
    • 84872896394 scopus 로고    scopus 로고
    • Tree-Guided Sparse Coding for Brain Disease Classification
    • Lecture Notes in Computer Science). Berlin Heidelberg: Springer
    • Liu, M., Zhang, D., Yap, P.-T., & Shen, D. (2012b). Tree-Guided Sparse Coding for Brain Disease Classification. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2012 (Vol. 7512, pp. 239-247, Lecture Notes in Computer Science). Berlin Heidelberg: Springer.
    • (2012) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2012 , vol.7512 , pp. 239-247
    • Liu, M.1    Zhang, D.2    Yap, P.-T.3    Shen, D.4
  • 27
    • 58549083944 scopus 로고    scopus 로고
    • Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI
    • 18846369 10.1007/s00234-008-0463-x
    • Magnin, B., Mesrob, L., Kinkingnehun, S., Pelegrini-Issac, M., Colliot, O., Sarazin, M., et al. (2009). Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI. Neuroradiology, 51(2), 73-83.
    • (2009) Neuroradiology , vol.51 , Issue.2 , pp. 73-83
    • Magnin, B.1    Mesrob, L.2    Kinkingnehun, S.3    Pelegrini-Issac, M.4    Colliot, O.5    Sarazin, M.6
  • 28
    • 77950343082 scopus 로고    scopus 로고
    • Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease
    • 20061613
    • Oliveira, P. J., Nitrini, R., Busatto, G., Buchpiguel, C., Sato, J., & Amaro, E. J. (2010). Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer's disease. Journal of Alzheimer's Disease, 19(4), 1263-1272.
    • (2010) Journal of Alzheimer's Disease , vol.19 , Issue.4 , pp. 1263-1272
    • Oliveira, P.J.1    Nitrini, R.2    Busatto, G.3    Buchpiguel, C.4    Sato, J.5    Amaro, E.J.6
  • 29
    • 67749118071 scopus 로고    scopus 로고
    • Early diagnosis of Alzheimer's disease using cortical thickness: Impact of cognitive reserve
    • 2714060 19439419 10.1093/brain/awp105
    • Querbes, O., Aubry, F., Pariente, J., Lotterie, J. A., Demonet, J. F., Duret, V., et al. (2009). Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain, 132(Pt 8), 2036-2047.
    • (2009) Brain , vol.132 , Issue.PART 8 , pp. 2036-2047
    • Querbes, O.1    Aubry, F.2    Pariente, J.3    Lotterie, J.A.4    Demonet, J.F.5    Duret, V.6
  • 30
    • 0036880516 scopus 로고    scopus 로고
    • HAMMER: Hierarchical attribute matching mechanism for elastic registration
    • Shen, D., & Davatzikos, C. (2002). HAMMER: hierarchical attribute matching mechanism for elastic registration. Medical Imaging, IEEE Transactions on, 21(11), 1421-1439.
    • (2002) Medical Imaging, IEEE Transactions on , vol.21 , Issue.11 , pp. 1421-1439
    • Shen, D.1    Davatzikos, C.2
  • 31
    • 0037229905 scopus 로고    scopus 로고
    • Very high resolution morphometry using mass-preserving deformations and HAMMER elastic registration
    • Shen, D., & Davatzikos, C. (2003). Very high resolution morphometry using mass-preserving deformations and HAMMER elastic registration. NeuroImage, 18(1), 28-41.
    • (2003) NeuroImage , vol.18 , Issue.1 , pp. 28-41
    • Shen, D.1    Davatzikos, C.2
  • 32
    • 0033132544 scopus 로고    scopus 로고
    • Affine-invariant image retrieval by correspondence matching of shapes
    • Shen, D., Wong, W., & Ip, H. H. S. (1999). Affine-invariant image retrieval by correspondence matching of shapes. Image and Vision Computing, 17(7), 489-499.
    • (1999) Image and Vision Computing , vol.17 , Issue.7 , pp. 489-499
    • Shen, D.1    Wong, W.2    Ip, H.H.S.3
  • 33
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • 10.1109/42.668698 1:STN:280:DyaK1c3nvVCksA%3D%3D 10.1109/42.668698
    • Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. Medical Imaging, IEEE Transactions on, 17(1), 87-97. doi: 10.1109/42.668698.
    • (1998) Medical Imaging, IEEE Transactions on , vol.17 , Issue.1 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 34
    • 77952888499 scopus 로고    scopus 로고
    • Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
    • 2871976 20347044 10.1016/j.neuroimage.2010.03.051
    • Stonnington, C. M., Chu, C., Kloppel, S., Jack, C. R., Jr., Ashburner, J., & Frackowiak, R. S. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. NeuroImage, 51(4), 1405-1413.
    • (2010) NeuroImage , vol.51 , Issue.4 , pp. 1405-1413
    • Stonnington, C.M.1    Chu, C.2    Kloppel, S.3    Jack, Jr.C.R.4    Ashburner, J.5    Frackowiak, R.S.6
  • 35
    • 67651154142 scopus 로고    scopus 로고
    • RABBIT: Rapid alignment of brains by building intermediate templates
    • Tang, S., Fan, Y., Wu, G., Kim, M., & Shen D., (2009). RABBIT: rapid alignment of brains by building intermediate templates. NeuroImage, 47(4), 1277-1287.
    • (2009) NeuroImage , vol.47 , Issue.4 , pp. 1277-1287
    • Tang, S.1    Fan, Y.2    Wu, G.3    Kim, M.4    Shen, D.5
  • 38
    • 78650237923 scopus 로고    scopus 로고
    • Enriched white matter connectivity networks for accurate identification of MCI patients
    • 3008336 20970508 10.1016/j.neuroimage.2010.10.026
    • Wee, C.-Y., Yap, P.-T., Li, W., Denny, K., Browndyke, J. N., Potter, G.G.,et al. (2011). Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage, 54(3), 1812-1822.
    • (2011) NeuroImage , vol.54 , Issue.3 , pp. 1812-1822
    • Wee, C.-Y.1    Yap, P.-T.2    Li, W.3    Denny, K.4    Browndyke, J.N.5    Potter, G.G.6
  • 39
    • 84855453290 scopus 로고    scopus 로고
    • Identification of MCI individuals using structural and functional connectivity networks
    • Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter, G. G., & Welsh-Bohmer, K. A. (2012). Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 59(3), 2045-2056.
    • (2012) Neuroimage , vol.59 , Issue.3 , pp. 2045-2056
    • Wee, C.-Y.1    Yap, P.-T.2    Zhang, D.3    Denny, K.4    Browndyke, J.N.5    Potter, G.G.6    Welsh-Bohmer, K.A.7
  • 40
    • 80054077865 scopus 로고    scopus 로고
    • Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease
    • 1:CAS:528:DC%2BC3MXhsVSgtr%2FI 3192759 22022397 10.1371/journal.pone. 0025446
    • Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D. P., Rueckert, D., et al. (2011). Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease. PLoS ONE, 6(10), e25446.
    • (2011) PLoS ONE , vol.6 , Issue.10 , pp. 25446
    • Wolz, R.1    Julkunen, V.2    Koikkalainen, J.3    Niskanen, E.4    Zhang, D.P.5    Rueckert, D.6
  • 41
    • 33748095663 scopus 로고    scopus 로고
    • Learning-based deformable registration of MR brain images
    • 10.1109/TMI.2006.879320
    • Wu, G., Qi, F., & Shen, D. (2006). Learning-based deformable registration of MR brain images. Medical Imaging, IEEE Transactions on, 25(9), 1145-1157.
    • (2006) Medical Imaging, IEEE Transactions on , vol.25 , Issue.9 , pp. 1145-1157
    • Wu, G.1    Qi, F.2    Shen, D.3
  • 42
    • 33750054125 scopus 로고    scopus 로고
    • Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms
    • 1752202 16997578 10.1016/j.neuroimage.2006.08.007
    • Xue, Z., Shen, D., Karacali, B., Stern, J., Rottenberg, D., & Davatzikos, C. (2006). Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms. NeuroImage, 33(3), 855-866.
    • (2006) NeuroImage , vol.33 , Issue.3 , pp. 855-866
    • Xue, Z.1    Shen, D.2    Karacali, B.3    Stern, J.4    Rottenberg, D.5    Davatzikos, C.6
  • 44
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • 10.1111/j.1467-9868.2005.00532.x 10.1111/j.1467-9868.2005.00532.x
    • Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 68(1), 49-67. doi: 10.1111/j.1467-9868.2005. 00532.x.
    • (2006) Journal of the Royal Statistical Society, Series B: Statistical Methodology , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 45
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
    • Zhang, D., & Shen, D. (2012a). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. Neuroimage, 59(2), 895-907.
    • (2012) Neuroimage , vol.59 , Issue.2 , pp. 895-907
    • Zhang, D.1    Shen, D.2
  • 46
    • 84863351725 scopus 로고    scopus 로고
    • Predicting future clinical changes of mci patients using longitudinal and multimodal biomarkers
    • 2012
    • Zhang, D., & Shen, D. (2012b). Predicting future clinical changes of mci patients using longitudinal and multimodal biomarkers. PloS one, 7(3), e33182, 2012.
    • (2012) PloS One , vol.7 , Issue.3
    • Zhang, D.1    Shen, D.2
  • 47
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55(3), 856-867.
    • (2011) NeuroImage , vol.55 , Issue.3 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 48
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • 10.1214/07-AOS584
    • Zhao, P., Rocha, G., & Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. The Annals of Statistics, 37(6A), 3468-3497.
    • (2009) The Annals of Statistics , vol.37 , Issue.6 A , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 49
    • 79960471063 scopus 로고    scopus 로고
    • Hierarchical anatomical brain networks for MCI prediction: Revisiting volumetric measures
    • 1:CAS:528:DC%2BC3MXhtVehtL%2FJ 3139571 21818280 10.1371/journal.pone. 0021935
    • Zhou, L., Wang, Y., Li, Y., Yap, P. T., & Shen, D. (2011). Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures. PLoS ONE, 6(7), e21935.
    • (2011) PLoS ONE , vol.6 , Issue.7 , pp. 21935
    • Zhou, L.1    Wang, Y.2    Li, Y.3    Yap, P.T.4    Shen, D.5
  • 50
    • 84875150953 scopus 로고    scopus 로고
    • DICCCOL: Dense individualized and common connectivity-based cortical landmarks
    • 3593574 22490548 10.1093/cercor/bhs072
    • Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., et al. (2013). DICCCOL: dense individualized and common connectivity-based cortical landmarks. Cerebral Cortex, 23(4), 786-800.
    • (2013) Cerebral Cortex , vol.23 , Issue.4 , pp. 786-800
    • Zhu, D.1    Li, K.2    Guo, L.3    Jiang, X.4    Zhang, T.5    Zhang, D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.