메뉴 건너뛰기




Volumn 21, Issue 3, 2014, Pages 644-655

Twenty four hours ahead global irradiation forecasting using multi-layer perceptron

Author keywords

ANN; Energy; Irradiation; Prediction; PV

Indexed keywords

AUTOREGRESSIVE MOVING AVERAGE MODEL; FORECASTING; IRRADIATION; RENEWABLE ENERGY RESOURCES; SOLAR RADIATION;

EID: 84904719751     PISSN: 13504827     EISSN: 14698080     Source Type: Journal    
DOI: 10.1002/met.1387     Document Type: Article
Times cited : (34)

References (59)
  • 1
    • 84904738006 scopus 로고    scopus 로고
    • Neural Network vs. ARMA modelling: constructing benchmark case studies of river flow prediction.
    • Abrahart RJ, See L. 1998. Neural Network vs. ARMA modelling: constructing benchmark case studies of river flow prediction.
    • (1998)
    • Abrahart, R.J.1    See, L.2
  • 2
    • 44049116600 scopus 로고
    • Error measures and the choice of a forecast method
    • Ahlburg D. 1992. Error measures and the choice of a forecast method. Int. J. Forecast. 8(1): 99-100.
    • (1992) Int. J. Forecast. , vol.8 , Issue.1 , pp. 99-100
    • Ahlburg, D.1
  • 3
    • 36248997731 scopus 로고    scopus 로고
    • Neural network for the estimation of UV erythemal irradiance using solar broadband irradiance
    • Alados I, Gomera MA, Foyo-Moreno I, Alados-Arboledas L. 2007. Neural network for the estimation of UV erythemal irradiance using solar broadband irradiance. Int. J. Climatol. 27(13): 1791-9.
    • (2007) Int. J. Climatol. , vol.27 , Issue.13 , pp. 1791-1799
    • Alados, I.1    Gomera, M.A.2    Foyo-Moreno, I.3    Alados-Arboledas, L.4
  • 4
    • 0032075864 scopus 로고    scopus 로고
    • An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation
    • Al-Alawi SM, Al-Hinai HA. 1998. An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation. Renew. Energy 14(1-4): 199-204.
    • (1998) Renew. Energy , vol.14 , Issue.1-4 , pp. 199-204
    • Al-Alawi, S.M.1    Al-Hinai, H.A.2
  • 5
    • 56049113721 scopus 로고    scopus 로고
    • Daily means ambient temperature prediction using artificial neural network method: a case study of Turkey
    • Altandombayci O, Golcu M. 2009. Daily means ambient temperature prediction using artificial neural network method: a case study of Turkey. Renew. Energy 34(4): 1158-61.
    • (2009) Renew. Energy , vol.34 , Issue.4 , pp. 1158-1161
    • Altandombayci, O.1    Golcu, M.2
  • 7
    • 3342897654 scopus 로고    scopus 로고
    • Atmospheric transmissivity: distribution and empirical estimation around the central Andes
    • Baigorria GA, Villegas EB, Trebejo I, Carlos JF, Quiroz R. 2004. Atmospheric transmissivity: distribution and empirical estimation around the central Andes. Int. J. Climatol. 24(9): 1121-36.
    • (2004) Int. J. Climatol. , vol.24 , Issue.9 , pp. 1121-1136
    • Baigorria, G.A.1    Villegas, E.B.2    Trebejo, I.3    Carlos, J.F.4    Quiroz, R.5
  • 8
    • 58149472216 scopus 로고    scopus 로고
    • Design of experiments on neural network's training for nonlinear time series forecasting
    • Balestrassi P, Popova E, Paiva A, Marangonlima J. 2009. Design of experiments on neural network's training for nonlinear time series forecasting. Neurocomputing 72(4-6): 1160-78.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 1160-1178
    • Balestrassi, P.1    Popova, E.2    Paiva, A.3    Marangonlima, J.4
  • 9
    • 77954309362 scopus 로고    scopus 로고
    • The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data
    • Behrang MA, Assareh E, Ghanbarzadeh A, Noghrehabadi AR. 2010. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Sol. Energy 84(8): 1468-80.
    • (2010) Sol. Energy , vol.84 , Issue.8 , pp. 1468-1480
    • Behrang, M.A.1    Assareh, E.2    Ghanbarzadeh, A.3    Noghrehabadi, A.R.4
  • 10
    • 77955281671 scopus 로고    scopus 로고
    • Radial Basis Function Network-based prediction of global solar radiation data: application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia
    • Benghanem M, Mellit A. 2010. Radial Basis Function Network-based prediction of global solar radiation data: application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia. Energy 35(9): 3751-62.
    • (2010) Energy , vol.35 , Issue.9 , pp. 3751-3762
    • Benghanem, M.1    Mellit, A.2
  • 11
    • 40949120619 scopus 로고    scopus 로고
    • Daily solar irradiation estimation over a mountainous area using artificial neural networks
    • Bosch J, Lopez G, Batlles F. 2008. Daily solar irradiation estimation over a mountainous area using artificial neural networks. Renew. Energy 33(7): 1622-8.
    • (2008) Renew. Energy , vol.33 , Issue.7 , pp. 1622-1628
    • Bosch, J.1    Lopez, G.2    Batlles, F.3
  • 14
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • Cao L. 1997. Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D: Nonlin. Phenom. 110(1-2): 43-50.
    • (1997) Phys. D: Nonlin. Phenom. , vol.110 , Issue.1-2 , pp. 43-50
    • Cao, L.1
  • 15
    • 33748316563 scopus 로고    scopus 로고
    • Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis
    • Cao JC, Cao SH. 2006. Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis. Energy 31(15): 3435-45.
    • (2006) Energy , vol.31 , Issue.15 , pp. 3435-3445
    • Cao, J.C.1    Cao, S.H.2
  • 17
    • 79955911232 scopus 로고    scopus 로고
    • Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies
    • Chen Y-H, Chen C-Y, Lee S-C. 2011. Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. Int. J. Hydrogen Energy 36(12): 6957-69.
    • (2011) Int. J. Hydrogen Energy , vol.36 , Issue.12 , pp. 6957-6969
    • Chen, Y.-H.1    Chen, C.-Y.2    Lee, S.-C.3
  • 18
    • 84857598529 scopus 로고    scopus 로고
    • 24-Hour-ahead forecasting of energy production in solar PV systems. 11th International Conference on Intelligent Systems Design and Applications (ISDA) Cordoba, Spain;
    • Cococcioni M, D'Andrea E, Lazzerini B. 2011. 24-Hour-ahead forecasting of energy production in solar PV systems. 11th International Conference on Intelligent Systems Design and Applications (ISDA) Cordoba, Spain; 1276-1281.
    • (2011) , pp. 1276-1281
    • Cococcioni, M.1    D'Andrea, E.2    Lazzerini, B.3
  • 19
    • 0032829433 scopus 로고    scopus 로고
    • Prévision hydrologique par réseaux de neurones artificiels: état de l'art
    • Coulibaly P, Anctil F, Bobée B. 1999. Prévision hydrologique par réseaux de neurones artificiels: état de l'art. Can. J. Civil Eng. 26(3): 293-304.
    • (1999) Can. J. Civil Eng. , vol.26 , Issue.3 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 20
    • 27144558589 scopus 로고    scopus 로고
    • Stepwise selection of artificial neural networks models for time series prediction
    • Crone SF. 2005. Stepwise selection of artificial neural networks models for time series prediction. J. Intell. Syst. 14(2-3): 99-122.
    • (2005) J. Intell. Syst. , vol.14 , Issue.2-3 , pp. 99-122
    • Crone, S.F.1
  • 21
    • 77952552084 scopus 로고    scopus 로고
    • Feature selection for time series prediction - A combined filter and wrapper approach for neural networks
    • Crone SF, Kourentzes N. 2010. Feature selection for time series prediction - A combined filter and wrapper approach for neural networks. Neurocomputing 73(10-12): 1923-36.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1923-1936
    • Crone, S.F.1    Kourentzes, N.2
  • 22
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. 1989. Approximation by superpositions of a sigmoidal function. Math. Control Signal Syst. 2(4): 303-14.
    • (1989) Math. Control Signal Syst. , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 23
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • De Gooijer JG, Hyndman RJ. 2006. 25 years of time series forecasting. Int. J. Forecast. 22(3): 443-73.
    • (2006) Int. J. Forecast. , vol.22 , Issue.3 , pp. 443-473
    • De Gooijer, J.G.1    Hyndman, R.J.2
  • 25
    • 0032583288 scopus 로고    scopus 로고
    • The role of clouds in the surface energy balance over the Amazon forest
    • Eltahir EAB, Humphries EJ Jr. 1998. The role of clouds in the surface energy balance over the Amazon forest. Int. J. Climatol. 18(14): 1575-1591.
    • (1998) Int. J. Climatol. , vol.18 , Issue.14 , pp. 1575-1591
    • Eltahir, E.A.B.1    Humphries Jr., E.J.2
  • 26
    • 77957342581 scopus 로고    scopus 로고
    • Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives
    • Franco A, Salza P. 2011. Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives. Renew. Energy 36: 743-753.
    • (2011) Renew. Energy , vol.36 , pp. 743-753
    • Franco, A.1    Salza, P.2
  • 27
    • 0003410290 scopus 로고
    • Princeton University Press: Princeton, NJ.
    • Hamilton J. 1994. Time Series Analysis. Princeton University Press: Princeton, NJ.
    • (1994) Time Series Analysis
    • Hamilton, J.1
  • 28
    • 84904716938 scopus 로고    scopus 로고
    • Multicriteria decision aiding for selection of photovoltaic plants on farming fields in Corsica. EU PVSEC Proceedings, Valencia, Spain;
    • Haurant P, Muselli M, Oberti P, Pillot B, Thibault C. 2010. Multicriteria decision aiding for selection of photovoltaic plants on farming fields in Corsica. EU PVSEC Proceedings, Valencia, Spain; 5267-5270.
    • (2010) , pp. 5267-5270
    • Haurant, P.1    Muselli, M.2    Oberti, P.3    Pillot, B.4    Thibault, C.5
  • 29
    • 0003795511 scopus 로고    scopus 로고
    • Updated and Expanded 10th Anniversary edn. Bantam Doubleday Dell Publishing Group: New York, NY.
    • Hawking S. 1998. A Brief History of Time, Updated and Expanded 10th Anniversary edn. Bantam Doubleday Dell Publishing Group: New York, NY.
    • (1998) A Brief History of Time
    • Hawking, S.1
  • 30
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. 1989. Multilayer feedforward networks are universal approximators. Neural Netw. 2(5): 359-66.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 32
    • 33646476333 scopus 로고    scopus 로고
    • Comparison of eight clear sky broadband models against 16 independent data banks
    • Ineichen P. 2006. Comparison of eight clear sky broadband models against 16 independent data banks. Sol. Energy 80(4): 468-78.
    • (2006) Sol. Energy , vol.80 , Issue.4 , pp. 468-478
    • Ineichen, P.1
  • 33
    • 45549108371 scopus 로고    scopus 로고
    • A broadband simplified version of the Solis clear sky model
    • Ineichen P. 2008. A broadband simplified version of the Solis clear sky model. Sol. Energy 82(8): 758-62.
    • (2008) Sol. Energy , vol.82 , Issue.8 , pp. 758-762
    • Ineichen, P.1
  • 34
    • 68949173665 scopus 로고    scopus 로고
    • Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage
    • Ipsakis D, Voutetakis S, Seferlis P, Stergiopoulos F, Elmasides C. 2009. Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage. Int. J. Hydrogen Energy 34(16): 7081-95.
    • (2009) Int. J. Hydrogen Energy , vol.34 , Issue.16 , pp. 7081-7095
    • Ipsakis, D.1    Voutetakis, S.2    Seferlis, P.3    Stergiopoulos, F.4    Elmasides, C.5
  • 35
    • 0025799121 scopus 로고
    • Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory
    • Ito Y. 1991. Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory. Neural Netw. 4(3): 385-94.
    • (1991) Neural Netw. , vol.4 , Issue.3 , pp. 385-394
    • Ito, Y.1
  • 37
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: a tutorial
    • Jain AK, Mao J, Mohiuddin KM. 1996. Artificial neural networks: a tutorial. Computer 29(3): 31-44.
    • (1996) Computer , vol.29 , Issue.3 , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiuddin, K.M.3
  • 38
    • 78650828070 scopus 로고    scopus 로고
    • Policy review of greenhouse gas emission reduction in Taiwan
    • Jenn Jiang H. 2011. Policy review of greenhouse gas emission reduction in Taiwan. Renew. Sustain. Energy Rev. 15(2): 1392-402.
    • (2011) Renew. Sustain. Energy Rev. , vol.15 , Issue.2 , pp. 1392-1402
    • Jenn Jiang, H.1
  • 39
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: a review
    • Kalogirou S. 2001. Artificial neural networks in renewable energy systems applications: a review. Renew. Sustain. Energy Rev. 5(4): 373-401.
    • (2001) Renew. Sustain. Energy Rev. , vol.5 , Issue.4 , pp. 373-401
    • Kalogirou, S.1
  • 40
    • 9944242270 scopus 로고    scopus 로고
    • Selection of input parameters to model direct solar irradiance by using artificial neural networks
    • López G, Batlles FJ, Tovar-Pescador J. 2005. Selection of input parameters to model direct solar irradiance by using artificial neural networks. Energy 30(9): 1675-84.
    • (2005) Energy , vol.30 , Issue.9 , pp. 1675-1684
    • López, G.1    Batlles, F.J.2    Tovar-Pescador, J.3
  • 41
    • 57649222644 scopus 로고    scopus 로고
    • Artificial intelligence techniques for sizing photovoltaic systems: a review
    • Mellit A, Kalogirou SA, Hontoria L, Shaari S. 2009. Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew. Sustain. Energy Rev. 13(2): 406-19.
    • (2009) Renew. Sustain. Energy Rev. , vol.13 , Issue.2 , pp. 406-419
    • Mellit, A.1    Kalogirou, S.A.2    Hontoria, L.3    Shaari, S.4
  • 42
    • 77949876934 scopus 로고    scopus 로고
    • A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy
    • Mellit A, Pavan AM. 2010. A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. Energy 84(5): 807-21.
    • (2010) Sol. Energy , vol.84 , Issue.5 , pp. 807-821
    • Mellit, A.1    Pavan, A.M.2
  • 43
    • 0035442696 scopus 로고    scopus 로고
    • Classification of rainfall variability by using artificial neural networks
    • Michaelides SC, Pattichis CS, Kleovoulou G. 2001. Classification of rainfall variability by using artificial neural networks. Int. J. Climatol. 21(11): 1401-14.
    • (2001) Int. J. Climatol. , vol.21 , Issue.11 , pp. 1401-1414
    • Michaelides, S.C.1    Pattichis, C.S.2    Kleovoulou, G.3
  • 44
    • 84879709551 scopus 로고    scopus 로고
    • Very short term forecasting of solar radiation. PVSC: 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, Vols. 1-4;
    • Moreno-Munoz A, de la Rosa JJG, Posadillo R, Bellido F. 2008. Very short term forecasting of solar radiation. PVSC: 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, Vols. 1-4; 949-53.
    • (2008) , pp. 949-953
    • Moreno-Munoz, A.1    de la Rosa, J.J.G.2    Posadillo, R.3    Bellido, F.4
  • 45
    • 42749083935 scopus 로고    scopus 로고
    • Predicting total solar irradiation values using artificial neural networks
    • Mubiru J. 2008. Predicting total solar irradiation values using artificial neural networks. Renew. Energy 33(10): 2329-32.
    • (2008) Renew. Energy , vol.33 , Issue.10 , pp. 2329-2332
    • Mubiru, J.1
  • 46
    • 7044241270 scopus 로고    scopus 로고
    • A new analysis of variability and predictability of seasonal rainfall of central southern Africa for 1950-94
    • Mwale D, Gan TY, Shen SSP. 2004. A new analysis of variability and predictability of seasonal rainfall of central southern Africa for 1950-94. Int. J. Climatol. 24(12): 1509-30.
    • (2004) Int. J. Climatol. , vol.24 , Issue.12 , pp. 1509-1530
    • Mwale, D.1    Gan, T.Y.2    Shen, S.S.P.3
  • 47
    • 33744937570 scopus 로고    scopus 로고
    • Potential of renewable hydrogen production for energy supply in Hong Kong
    • Ni M, Leung MKH, Sumathy K, Leung DYC. 2006. Potential of renewable hydrogen production for energy supply in Hong Kong. Int. J. Hydrogen Energy 31(10): 1401-12.
    • (2006) Int. J. Hydrogen Energy , vol.31 , Issue.10 , pp. 1401-1412
    • Ni, M.1    Leung, M.K.H.2    Sumathy, K.3    Leung, D.Y.C.4
  • 48
    • 78349311143 scopus 로고    scopus 로고
    • Forecasting of preprocessed daily solar radiation time series using neural networks
    • Paoli C, Voyant C, Muselli M, Nivet M-L. 2010. Forecasting of preprocessed daily solar radiation time series using neural networks. Sol. Energy 84(12): 2146-60.
    • (2010) Sol. Energy , vol.84 , Issue.12 , pp. 2146-2160
    • Paoli, C.1    Voyant, C.2    Muselli, M.3    Nivet, M.-L.4
  • 49
    • 84904723411 scopus 로고
    • Nonlinear time series analysis. Proceedings of the 3rd International Specialist Workshop on Nonlinear Dynamics of Electronic Systems, NDES'95, 28-29, University College Dublin, Ireland.
    • Parlitz U. 1995. Nonlinear time series analysis. Proceedings of the 3rd International Specialist Workshop on Nonlinear Dynamics of Electronic Systems, NDES'95, 28-29, University College Dublin, Ireland, 179-192.
    • (1995) , pp. 179-192
    • Parlitz, U.1
  • 50
    • 0023486936 scopus 로고
    • Estimates of global radiation at the ground from the reduced data sets of the international satellite cloud climatology project
    • Raschke E, Gratzki A, Rieland M. 1987. Estimates of global radiation at the ground from the reduced data sets of the international satellite cloud climatology project. J. Climatol. 7(3): 205-13.
    • (1987) J. Climatol. , vol.7 , Issue.3 , pp. 205-213
    • Raschke, E.1    Gratzki, A.2    Rieland, M.3
  • 51
    • 0038713376 scopus 로고    scopus 로고
    • Solar resource estimation using artificial neural networks and comparison with other correlation models
    • Reddy K. 2003. Solar resource estimation using artificial neural networks and comparison with other correlation models. Energy Convers. Manage. 44(15): 2519-30.
    • (2003) Energy Convers. Manage. , vol.44 , Issue.15 , pp. 2519-2530
    • Reddy, K.1
  • 52
    • 9344252852 scopus 로고    scopus 로고
    • Design and analysis of stand-alone hydrogen energy systems with different renewable sources
    • Santarelli M, Cali'̀ M, Macagno S. 2004. Design and analysis of stand-alone hydrogen energy systems with different renewable sources. Int. J. Hydrogen Energy 29(15): 1571-86.
    • (2004) Int. J. Hydrogen Energy , vol.29 , Issue.15 , pp. 1571-1586
    • Santarelli, M.1    Cali'̀, M.2    Macagno, S.3
  • 53
    • 0034140815 scopus 로고    scopus 로고
    • Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques
    • Sfetsos A, Coonick AH. 2000. Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Sol. Energy 68(2): 169-78.
    • (2000) Sol. Energy , vol.68 , Issue.2 , pp. 169-178
    • Sfetsos, A.1    Coonick, A.H.2
  • 55
    • 84904725007 scopus 로고    scopus 로고
    • Prédiction de séries temporelles de rayonnement solaire global et de production d'énergie photovoltaïque à partir de réseaux de neurones artificiels, Thèse de doctorat, Université de Corse, Ajaccio, France.
    • Voyant C. 2012. Prédiction de séries temporelles de rayonnement solaire global et de production d'énergie photovoltaïque à partir de réseaux de neurones artificiels, Thèse de doctorat, Université de Corse, Ajaccio, France.
    • (2012)
    • Voyant, C.1
  • 56
    • 78650780734 scopus 로고    scopus 로고
    • Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation
    • Voyant C, Muselli M, Paoli C, Nivet M-L. 2011. Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation. Energy 36(1): 348-59.
    • (2011) Energy , vol.36 , Issue.1 , pp. 348-359
    • Voyant, C.1    Muselli, M.2    Paoli, C.3    Nivet, M.-L.4
  • 57
    • 84857692148 scopus 로고    scopus 로고
    • Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation
    • Voyant C, Muselli M, Paoli C, Nivet ML. 2012. Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation. Energy 39: 341-355.
    • (2012) Energy , vol.39 , pp. 341-355
    • Voyant, C.1    Muselli, M.2    Paoli, C.3    Nivet, M.L.4
  • 58
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang GP, Qi M. 2005. Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 160(2): 501-14.
    • (2005) Eur. J. Oper. Res. , vol.160 , Issue.2 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2
  • 59
    • 38849141656 scopus 로고    scopus 로고
    • Optimal energy management strategy and system sizing method for stand-alone photovoltaic-hydrogen systems
    • Zhou K, Ferreira JA, de Haan SWH. 2008. Optimal energy management strategy and system sizing method for stand-alone photovoltaic-hydrogen systems. Int. J. Hydrogen Energy 33(2): 477-89.
    • (2008) Int. J. Hydrogen Energy , vol.33 , Issue.2 , pp. 477-489
    • Zhou, K.1    Ferreira, J.A.2    de Haan, S.W.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.