메뉴 건너뛰기




Volumn 4, Issue 2, 2014, Pages

Balanced networks of spiking neurons with spatially dependent recurrent connections

Author keywords

Biological physics; Complex systems

Indexed keywords

LARGE SCALE SYSTEMS; MEAN FIELD THEORY;

EID: 84904576769     PISSN: None     EISSN: 21603308     Source Type: Journal    
DOI: 10.1103/PhysRevX.4.021039     Document Type: Article
Times cited : (105)

References (51)
  • 3
    • 17844406150 scopus 로고    scopus 로고
    • Neuronal Variability: Noise or Part of the Signal?
    • R. B. Stein, E. R. Gossen, and K. E. Jones, Neuronal Variability: Noise or Part of the Signal?, Nat. Rev. Neurosci. 6, 389 (2005).
    • (2005) Nat. Rev. Neurosci. , vol.6 , pp. 389
    • Stein, R.B.1    Gossen, E.R.2    Jones, K.E.3
  • 4
    • 65549099674 scopus 로고    scopus 로고
    • Beyond Poisson: Increased Spike-Time Regularity across Primate Parietal Cortex
    • G. Maimon and J. A. Assad, Beyond Poisson: Increased Spike-Time Regularity across Primate Parietal Cortex, Neuron 62, 426 (2009).
    • (2009) Neuron , vol.62 , pp. 426
    • Maimon, G.1    Assad, J.A.2
  • 6
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity
    • C. van Vreeswijk and H. Sompolinsky, Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity, Science 274, 1724 (1996).
    • (1996) Science , vol.274 , pp. 1724
    • van Vreeswijk, C.1    Sompolinsky, H.2
  • 7
    • 0032528729 scopus 로고    scopus 로고
    • Chaotic Balanced State in a Model of Cortical Circuits
    • C. van Vreeswijk and H. Sompolinsky, Chaotic Balanced State in a Model of Cortical Circuits, Neural Comput. 10, 1321 (1998).
    • (1998) Neural Comput , vol.10 , pp. 1321
    • van Vreeswijk, C.1    Sompolinsky, H.2
  • 8
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons
    • N. Brunel, Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons, J. Comput. Neurosci. 8, 183 (2000).
    • (2000) J. Comput. Neurosci. , vol.8 , pp. 183
    • Brunel, N.1
  • 9
    • 3142740626 scopus 로고    scopus 로고
    • Computational Neuroscience: A Comprehensive Approach (CRC Press, Boca Raton, FL, 2004), p
    • A. Renart, N. Brunel, and X.-J. Wang, Computational Neuroscience: A Comprehensive Approach (CRC Press, Boca Raton, FL, 2004), pp. 431-490.
    • Renart, A.1    Brunel, N.2    Wang, X.-J.3
  • 10
    • 59149102161 scopus 로고    scopus 로고
    • A Master Equation Formalism for Macroscopic Modeling of Asynchronous Irregular Activity States
    • S. E. Boustani and A. Destexhe, A Master Equation Formalism for Macroscopic Modeling of Asynchronous Irregular Activity States, Neural Comput. 21, 46 (2009).
    • (2009) Neural Comput , vol.21 , pp. 46
    • Boustani, S.E.1    Destexhe, A.2
  • 12
    • 0043230411 scopus 로고
    • Spin Glasses: Experimental Facts, Theoretical Concepts, and Open Questions
    • K. Binder and A. P. Young, Spin Glasses: Experimental Facts, Theoretical Concepts, and Open Questions, Rev. Mod. Phys. 58, 801 (1986).
    • (1986) Rev. Mod. Phys. , vol.58 , pp. 801
    • Binder, K.1    Young, A.P.2
  • 13
    • 0038688379 scopus 로고    scopus 로고
    • Turning On and Off Recurrent Balanced Cortical Activity
    • Y. Shu, A. Hasenstaub, and D. A. McCormick, Turning On and Off Recurrent Balanced Cortical Activity, Nature (London) 423, 288 (2003).
    • (2003) Nature (London) , vol.423 , pp. 288
    • Shu, Y.1    Hasenstaub, A.2    McCormick, D.A.3
  • 14
    • 33646833761 scopus 로고    scopus 로고
    • Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition
    • B. Haider, A. Duque, A. R. Hasenstaub, and D. A. McCormick, Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition, J. Neurosci. 26, 4535 (2006).
    • (2006) J. Neurosci. , vol.26 , pp. 4535
    • Haider, B.1    Duque, A.2    Hasenstaub, A.R.3    McCormick, D.A.4
  • 16
    • 77954231844 scopus 로고    scopus 로고
    • Sensitivity to Perturbations In Vivo Implies High Noise and Suggests Rate Coding in Cortex
    • M. London, A. Roth, L. Beeren, M. Häusser, and P. E. Latham, Sensitivity to Perturbations In Vivo Implies High Noise and Suggests Rate Coding in Cortex, Nature (London) 466, 123 (2010).
    • (2010) Nature (London) , vol.466 , pp. 123
    • London, M.1    Roth, A.2    Beeren, L.3    Häusser, M.4    Latham, P.E.5
  • 17
    • 84883447531 scopus 로고    scopus 로고
    • Balanced Cortical Microcircuitry for Maintaining Information in Working Memory
    • S. Lim and M. S. Goldman, Balanced Cortical Microcircuitry for Maintaining Information in Working Memory, Nat. Neurosci. 16, 1306 (2013).
    • (2013) Nat. Neurosci. , vol.16 , pp. 1306
    • Lim, S.1    Goldman, M.S.2
  • 18
    • 84888221902 scopus 로고    scopus 로고
    • Predictive Coding of Dynamical Variables in Balanced Spiking Networks
    • M. Boerlin, C. K. Machens, and S. Denève, Predictive Coding of Dynamical Variables in Balanced Spiking Networks, PLoS Comput. Biol. 9, e1003258 (2013).
    • (2013) PLoS Comput. Biol. , vol.9
    • Boerlin, M.1    Machens, C.K.2    Denève, S.3
  • 19
    • 84858394882 scopus 로고    scopus 로고
    • The Mechanism of Orientation Selectivity in Primary Visual Cortex without a Functional Map
    • D. Hansel and C. van Vreeswijk, The Mechanism of Orientation Selectivity in Primary Visual Cortex without a Functional Map, J. Neurosci. 32, 4049 (2012).
    • (2012) J. Neurosci. , vol.32 , pp. 4049
    • Hansel, D.1    van Vreeswijk, C.2
  • 20
    • 84868159004 scopus 로고    scopus 로고
    • Slow Dynamics and High Variability in Balanced Cortical Networks with Clustered Connections
    • A. Litwin-Kumar and B. Doiron, Slow Dynamics and High Variability in Balanced Cortical Networks with Clustered Connections, Nat. Neurosci. 15, 1498 (2012).
    • (2012) Nat. Neurosci. , vol.15 , pp. 1498
    • Litwin-Kumar, A.1    Doiron, B.2
  • 21
    • 0041353445 scopus 로고    scopus 로고
    • Pyramidal Cell Communication within Local Networks in Layer 2=3 of Rat Neocortex
    • C. Holmgren, T. Harkany, B. Svennenfors, and Y. Zilberter, Pyramidal Cell Communication within Local Networks in Layer 2=3 of Rat Neocortex, J. Physiol. 551, 139 (2003).
    • (2003) J. Physiol. , vol.551 , pp. 139
    • Holmgren, C.1    Harkany, T.2    Svennenfors, B.3    Zilberter, Y.4
  • 22
    • 69049097116 scopus 로고    scopus 로고
    • Spatial Profile and Differential Recruitment of GABAB Modulate Oscillatory Activity in Auditory Cortex
    • A.-M. M. Oswald, B. Doiron, J. Rinzel, and A. D. Reyes, Spatial Profile and Differential Recruitment of GABAB Modulate Oscillatory Activity in Auditory Cortex, J. Neurosci. 29, 10 321 (2009).
    • (2009) J. Neurosci. , vol.29 , Issue.10 , pp. 321
    • Oswald, A.-M.1    Doiron, B.2    Rinzel, J.3    Reyes, A.D.4
  • 24
    • 84859768155 scopus 로고    scopus 로고
    • Spatial Profile of Excitatory and Inhibitory Synaptic Connectivity in Mouse Primary Auditory Cortex
    • R. B. Levy and A. D. Reyes, Spatial Profile of Excitatory and Inhibitory Synaptic Connectivity in Mouse Primary Auditory Cortex, J. Neurosci. 32, 5609 (2012).
    • (2012) J. Neurosci. , vol.32 , pp. 5609
    • Levy, R.B.1    Reyes, A.D.2
  • 25
    • 23944441267 scopus 로고    scopus 로고
    • Waves, Bumps, and Patterns in Neural Field Theories
    • S. Coombes, Waves, Bumps, and Patterns in Neural Field Theories, Biol. Cybern. 93, 91 (2005).
    • (2005) Biol. Cybern. , vol.93 , pp. 91
    • Coombes, S.1
  • 26
  • 28
    • 42149167934 scopus 로고    scopus 로고
    • Additive Noise-Induced Turing Transitions in Spatial Systems with Application to Neural Fields and the Swift-Hohenberg Equation
    • A. Hutt, A. Longtin, and L. Schimansky-Geier, Additive Noise-Induced Turing Transitions in Spatial Systems with Application to Neural Fields and the Swift-Hohenberg Equation, Physica (Amsterdam) 237D, 755 (2008).
    • (2008) Physica (Amsterdam) , vol.237 D , pp. 755
    • Hutt, A.1    Longtin, A.2    Schimansky-Geier, L.3
  • 29
    • 77649304853 scopus 로고    scopus 로고
    • Systematic Fluctuation Expansion for Neural Network Activity Equations
    • M. A. Buice, J. D. Cowan, and C. C. Chow, Systematic Fluctuation Expansion for Neural Network Activity Equations, Neural Comput. 22, 377 (2010).
    • (2010) Neural Comput , vol.22 , pp. 377
    • Buice, M.A.1    Cowan, J.D.2    Chow, C.C.3
  • 30
    • 73949151166 scopus 로고    scopus 로고
    • Stochastic Neural Field Theory and the System-Size Expansion
    • P. C. Bressloff, Stochastic Neural Field Theory and the System-Size Expansion, SIAM J. Appl. Math. 70, 1488 (2009).
    • (2009) SIAM J. Appl. Math. , vol.70 , pp. 1488
    • Bressloff, P.C.1
  • 31
    • 0029160319 scopus 로고
    • An Emergent Model of Orientation Selectivity in Cat Visual Cortical Simple Cells
    • D. Somers, S. Nelson, and M. Sur, An Emergent Model of Orientation Selectivity in Cat Visual Cortical Simple Cells, J. Neurosci. 15, 5448 (1995).
    • (1995) J. Neurosci. , vol.15 , pp. 5448
    • Somers, D.1    Nelson, S.2    Sur, M.3
  • 32
    • 84555218593 scopus 로고    scopus 로고
    • Spatiotemporal Dynamics of Continuum Neural Fields
    • P. C. Bressloff, Spatiotemporal Dynamics of Continuum Neural Fields, J. Phys. A 45, 033001 (2012).
    • (2012) J. Phys. A , vol.45 , pp. 033001
    • Bressloff, P.C.1
  • 33
    • 0032525177 scopus 로고    scopus 로고
    • The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding
    • M. N. Shadlen and W. T. Newsome, The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding, J. Neurosci. 18, 3870 (1998).
    • (1998) J. Neurosci. , vol.18 , pp. 3870
    • Shadlen, M.N.1    Newsome, W.T.2
  • 34
    • 0030947941 scopus 로고    scopus 로고
    • Model of Global Spontaneous Activity and Local Structured Activity during Delay Periods in the Cerebral Cortex
    • D. Amit and N. Brunel, Model of Global Spontaneous Activity and Local Structured Activity during Delay Periods in the Cerebral Cortex, Cereb. Cortex 7, 237 (1997).
    • (1997) Cereb. Cortex , vol.7 , pp. 237
    • Amit, D.1    Brunel, N.2
  • 35
    • 34548099438 scopus 로고    scopus 로고
    • Firing-Rate Response of Linear and Nonlinear Integrate-and-Fire Neurons to Modulated Current-Based and Conductance-Based Synaptic Drive
    • M. J. E. Richardson, Firing-Rate Response of Linear and Nonlinear Integrate-and-Fire Neurons to Modulated Current-Based and Conductance-Based Synaptic Drive, Phys. Rev. E 76, 021919 (2007).
    • (2007) Phys. Rev. E , vol.76 , pp. 021919
    • Richardson, M.J.E.1
  • 37
    • 0037169450 scopus 로고    scopus 로고
    • Emergence of Chaotic Behaviour in Linearly Stable Systems
    • F. Ginelli, R. Livi, and A. Politi, Emergence of Chaotic Behaviour in Linearly Stable Systems, J. Phys. A 35, 499 (2002).
    • (2002) J. Phys. A , vol.35 , pp. 499
    • Ginelli, F.1    Livi, R.2    Politi, A.3
  • 38
    • 28044448948 scopus 로고    scopus 로고
    • Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons
    • T. P. Vogels and L. F. Abbott, Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons, J. Neurosci. 25, 10 786 (2005).
    • (2005) J. Neurosci. , vol.25 , Issue.10 , pp. 786
    • Vogels, T.P.1    Abbott, L.F.2
  • 39
    • 84872392824 scopus 로고    scopus 로고
    • Dynamic Flux Tubes form Reservoirs of Stability in Neuronal Circuits
    • M. Monteforte and F. Wolf, Dynamic Flux Tubes form Reservoirs of Stability in Neuronal Circuits, Phys. Rev. X 2, 041007 (2012).
    • (2012) Phys. Rev. X , vol.2 , pp. 041007
    • Monteforte, M.1    Wolf, F.2
  • 40
    • 84959542925 scopus 로고    scopus 로고
    • Dynamics of Networks of Excitatory and Inhibitory Neurons in Response to Time-Dependent Inputs
    • E. Ledoux and N. Brunel, Dynamics of Networks of Excitatory and Inhibitory Neurons in Response to Time-Dependent Inputs, Front. Comput. Neurosci. 5, 25 (2011).
    • (2011) Front. Comput. Neurosci. , vol.5 , pp. 25
    • Ledoux, E.1    Brunel, N.2
  • 41
    • 0019455214 scopus 로고
    • Intracortical Arborizations and Receptive Fields of Identified Ventrobasal Thalamocortical Afferents to the Primary Somatic Sensory Cortex in the Cat
    • P. Landry and M. Deschênes, Intracortical Arborizations and Receptive Fields of Identified Ventrobasal Thalamocortical Afferents to the Primary Somatic Sensory Cortex in the Cat, J. Comp. Neurol. 199, 345 (1981).
    • (1981) J. Comp. Neurol. , vol.199 , pp. 345
    • Landry, P.1    Deschênes, M.2
  • 42
    • 0024451309 scopus 로고
    • Arborisation Pattern and Postsynaptic Targets of Physiologically Identified Thalamocortical Afferents in Striate Cortex of the Macaque Monkey
    • T. Freund, K. Martin, I. Soltesz, P. Somogyi, and D. Whitteridge, Arborisation Pattern and Postsynaptic Targets of Physiologically Identified Thalamocortical Afferents in Striate Cortex of the Macaque Monkey, J. Comp. Neurol. 289, 315 (1989).
    • (1989) J. Comp. Neurol. , vol.289 , pp. 315
    • Freund, T.1    Martin, K.2    Soltesz, I.3    Somogyi, P.4    Whitteridge, D.5
  • 43
    • 0029031894 scopus 로고
    • Extent of Intracortical Arborization of Thalamocortical Axons as a Determinant of Representational Plasticity in Monkey Somatic Sensory Cortex
    • E. Rausell and E. Jones, Extent of Intracortical Arborization of Thalamocortical Axons as a Determinant of Representational Plasticity in Monkey Somatic Sensory Cortex, J. Neurosci. 15, 4270 (1995).
    • (1995) J. Neurosci. , vol.15 , pp. 4270
    • Rausell, E.1    Jones, E.2
  • 45
    • 0038521278 scopus 로고    scopus 로고
    • Dynamics of Orientation Selectivity in the Primary Visual Crtex and the Importance of Cortical Inhibition
    • R. Shapley, M. Hawken, and D. L. Ringach, Dynamics of Orientation Selectivity in the Primary Visual Crtex and the Importance of Cortical Inhibition, Neuron 38, 689 (2003).
    • (2003) Neuron , vol.38 , pp. 689
    • Shapley, R.1    Hawken, M.2    Ringach, D.L.3
  • 46
    • 85081815114 scopus 로고    scopus 로고
    • Integral Equations (Interscience, New York, 1957)
    • F. G. Tricomi, Integral Equations (Interscience, New York, 1957).
    • Tricomi, F.G.1
  • 47
    • 85057356998 scopus 로고    scopus 로고
    • Handbook of integral equations (CRC press, Boca Raton, FL, 2008)
    • A. D. Polyanin and A. V. Manzhirov, Handbook of integral equations (CRC press, Boca Raton, FL, 2008).
    • Polyanin, A.D.1    Manzhirov, A.V.2
  • 48
    • 0001195441 scopus 로고
    • Numerical Tools for Analysis and Solution of Fredholm Integral Equations of the First Kind
    • P. Hansen, Numerical Tools for Analysis and Solution of Fredholm Integral Equations of the First Kind, Inverse Probl. 8, 849 (1992).
    • (1992) Inverse Probl , vol.8 , pp. 849
    • Hansen, P.1
  • 49
    • 77956963311 scopus 로고    scopus 로고
    • in Irregular Activity in Large Networks of Neurons, Proceedings of the Les Houches Summer School
    • Course 9 C. Chow, B. Gutkin, D. Hansel, C. Meunier, and J. Dalibard (Elsevier, London
    • C. van Vreeswijk and H. Sompolinsky, in Irregular Activity in Large Networks of Neurons, Proceedings of the Les Houches Summer School, Course 9 C. Chow, B. Gutkin, D. Hansel, C. Meunier, and J. Dalibard (Elsevier, London, 2005), Vol. 80, pp. 341-406.
    • (2005) , vol.80 , pp. 341-406
    • van Vreeswijk, C.1    Sompolinsky, H.2
  • 51
    • 84871821796 scopus 로고    scopus 로고
    • Short-Term Plasticity Explains Irregular Persistent Activity in Working Memory Tasks
    • D. Hansel and G. Mato, Short-Term Plasticity Explains Irregular Persistent Activity in Working Memory Tasks, J. Neurosci. 33, 133 (2013).
    • (2013) J. Neurosci , vol.33 , pp. 133
    • Hansel, D.1    Mato, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.