-
1
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
H. X. Wang, W. Fan, S. P. Philip, J. W. Han, Mining concept-drifting data streams using ensemble classifiers, in: 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'03), 2003, 226-235
-
(2003)
9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'03)
, pp. 226-235
-
-
Wang, H.X.1
Fan, W.2
Philip, S.P.3
Han, J.W.4
-
2
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer, M. Kubat, Learning in the presence of concept drift and hidden contexts, Machine Learning, 23 (1996), 69-101
-
(1996)
Machine Learning
, vol.23
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
4
-
-
2442562542
-
Forest trees for on-line data
-
J. Gama, P. Medas, R. Rocha, Forest trees for on-line data, in: the 2004 ACM Symposium on Applied Computing, 2004, 632-636
-
(2004)
The 2004 ACM Symposium on Applied Computing
, pp. 632-636
-
-
Gama, J.1
Medas, P.2
Rocha, R.3
-
5
-
-
70350649252
-
Accurate decision trees for mining high-speed data streams
-
J. Gama, R. Rocha, P. Medas, Accurate decision trees for mining high-speed data streams, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, 523-528
-
(2003)
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 523-528
-
-
Gama, J.1
Rocha, R.2
Medas, P.3
-
6
-
-
33644537898
-
Learning decision trees from dynamic data streams
-
J. Gama, P. Medas, P. Rodrigues, Learning decision trees from dynamic data streams, in: Proceedings of the 2005 ACM Symposium on Applied Computing, 2005, 573-577
-
(2005)
Proceedings of the 2005 ACM Symposium on Applied Computing
, pp. 573-577
-
-
Gama, J.1
Medas, P.2
Rodrigues, P.3
-
7
-
-
79551557610
-
An information-theoretic approach to detecting changes in multi-dimensional data streams
-
T. Dasu, S. Krishnan, K. Venkatasubramanian, K. Yi, An information-theoretic approach to detecting changes in multi-dimensional data streams, in: Proc. Symp. on the Interface of Statistics, Computing Science, and Applications, 2006, 1-12
-
(2006)
Proc. Symp. on the Interface of Statistics, Computing Science, and Applications
, pp. 1-12
-
-
Dasu, T.1
Krishnan, S.2
Venkatasubramanian, K.3
Yi, K.4
-
8
-
-
80052618043
-
Classifying evolving data streams with partially labeled data
-
H. Borchani, P. Larranaga, C. Bielza, Classifying evolving data streams with partially labeled data, Intelligent Data Analysis, 15(2011), 655-670
-
(2011)
Intelligent Data Analysis
, vol.15
, pp. 655-670
-
-
Borchani, H.1
Larranaga, P.2
Bielza, C.3
-
13
-
-
0010012318
-
Incremental learning from noisy data
-
J. C. Schlimmer, R. H. Granger, Incremental learning from noisy data, Machine Learning, 1 (1986), 317-354
-
(1986)
Machine Learning
, vol.1
, pp. 317-354
-
-
Schlimmer, J.C.1
Granger, R.H.2
-
14
-
-
57049173376
-
Classifying data streams with skewed class distributions and concept drifts
-
J. Gao, Classifying data streams with skewed class distributions and concept drifts, Internet Computing, 12 (2008), 37-49
-
(2008)
Internet Computing
, vol.12
, pp. 37-49
-
-
Gao, J.1
-
15
-
-
0035789299
-
Mining time-changing data streams
-
G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, 97-106
-
(2001)
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
16
-
-
77949913486
-
The impact of diversity on online ensemble learning in the presence of concept drift
-
L. L. Minku, A. P. White, X. Yao, The impact of diversity on online ensemble learning in the presence of concept drift, IEEE Transactions on Knowledge and Data Engineering, 22 (2010), 730-742
-
(2010)
IEEE Transactions on Knowledge and Data Engineering
, vol.22
, pp. 730-742
-
-
Minku, L.L.1
White, A.P.2
Yao, X.3
|