-
2
-
-
84875686716
-
Ti based biomaterials, the ultimate choice for orthopaedic implants-A review
-
Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Progress in Materials Science. 2009;54(3):397-425.
-
(2009)
Progress in Materials Science
, vol.54
, Issue.3
, pp. 397-425
-
-
Geetha, M.1
Singh, A.K.2
Asokamani, R.3
Gogia, A.K.4
-
3
-
-
67349278783
-
The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver
-
Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34(2):103-110.
-
(2009)
Int J Antimicrob Agents
, vol.34
, Issue.2
, pp. 103-110
-
-
Monteiro, D.R.1
Gorup, L.F.2
Takamiya, A.S.3
Ruvollo-Filho, A.C.4
de Camargo, E.R.5
Barbosa, D.B.6
-
4
-
-
33747812542
-
Reducing implant-related infections: Active release strategies
-
Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780-789.
-
(2006)
Chem Soc Rev.
, vol.35
, Issue.9
, pp. 780-789
-
-
Hetrick, E.M.1
Schoenfisch, M.H.2
-
5
-
-
84855171884
-
Plasma-modified biomaterials for self-antimicrobial applications
-
Wu S, Liu X, Yeung A, et al. Plasma-modified biomaterials for self-antimicrobial applications. ACS Appl Mater Interfaces. 2011;3(8): 2851-2860.
-
(2011)
ACS Appl Mater Interfaces
, vol.3
, Issue.8
, pp. 2851-2860
-
-
Wu, S.1
Liu, X.2
Yeung, A.3
-
6
-
-
0033591467
-
Bacterial biofilms: A common cause of persistent infections
-
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318-1322.
-
(1999)
Science
, vol.284
, Issue.5418
, pp. 1318-1322
-
-
Costerton, J.W.1
Stewart, P.S.2
Greenberg, E.P.3
-
7
-
-
84885873239
-
Super Superbug NDM-1 Spreads in Europe
-
doi: 10.1093/cid/ciq232
-
Kelland K. "Super Superbug" NDM-1 Spreads in Europe. Clinical Infectious Diseases. 2011;52(4):I-II. doi: 10.1093/cid/ciq232.
-
(2011)
Clinical Infectious Diseases
, vol.52
, Issue.4
-
-
Kelland, K.1
-
8
-
-
84873379208
-
Silver as antibacterial agent: Ion, nanoparticle, and metal
-
Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013;52(6):1636-1653.
-
(2013)
Angew Chem Int Ed Engl.
, vol.52
, Issue.6
, pp. 1636-1653
-
-
Chernousova, S.1
Epple, M.2
-
9
-
-
84896312410
-
Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer
-
Li J, Wang G, Zhu H, et al. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci Rep. 2014; 4:4359.
-
(2014)
Sci Rep.
, vol.4
, pp. 4359
-
-
Li, J.1
Wang, G.2
Zhu, H.3
-
10
-
-
81455138107
-
Titanium oxide antibacterial surfaces in biomedical devices
-
Visai L, De Nardo L, Punta C, et al. Titanium oxide antibacterial surfaces in biomedical devices. Int J Artif Organs. 2011;34(9):929-946.
-
(2011)
Int J Artif Organs
, vol.34
, Issue.9
, pp. 929-946
-
-
Visai, L.1
De Nardo, L.2
Punta, C.3
-
12
-
-
80053310706
-
2-silver interface
-
2-silver interface. ACS Nano. 2011;5(9): 7369-7376.
-
(2011)
ACS Nano.
, vol.5
, Issue.9
, pp. 7369-7376
-
-
Takai, A.1
Kamat, P.V.2
-
13
-
-
77949545274
-
Memory antibacterial effect from photoelectron transfer between nanoparticles and visible light photocatalyst
-
Li Q, Li YW, Liu Z, Xie R, Shang JK. Memory antibacterial effect from photoelectron transfer between nanoparticles and visible light photocatalyst. J Mater Chem. 2010;20(6):1068-1072.
-
(2010)
J Mater Chem.
, vol.20
, Issue.6
, pp. 1068-1072
-
-
Li, Q.1
Li, Y.W.2
Liu, Z.3
Xie, R.4
Shang, J.K.5
-
14
-
-
77955279324
-
Mechanism of Escherichia coli inactivation on palladium-modified nitrogen-doped titanium dioxide
-
Wu P, Imlay JA, Shang JK. Mechanism of Escherichia coli inactivation on palladium-modified nitrogen-doped titanium dioxide. Biomaterials. 2010;31(29):7526-7533.
-
(2010)
Biomaterials
, vol.31
, Issue.29
, pp. 7526-7533
-
-
Wu, P.1
Imlay, J.A.2
Shang, J.K.3
-
15
-
-
78650293305
-
Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections
-
Hurdle JG, O'Neill AJ, Chopra I, Lee RE. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol. 2011;9(1):62-75.
-
(2011)
Nat Rev Microbiol.
, vol.9
, Issue.1
, pp. 62-75
-
-
Hurdle, J.G.1
O'Neill, A.J.2
Chopra, I.3
Lee, R.E.4
-
16
-
-
79955886933
-
Metabolite-enabled eradication of bacterial persisters by aminoglycosides
-
Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 2011; 473(7346):216-220.
-
(2011)
Nature
, vol.473
, Issue.7346
, pp. 216-220
-
-
Allison, K.R.1
Brynildsen, M.P.2
Collins, J.J.3
-
17
-
-
84865267857
-
In situ construction of a titanate-silver nanoparticle-titanate sandwich nanostructure on a metallic titanium surface for bacteriostatic and biocompatible implants
-
Ren N, Li R, Chen L, et al. In situ construction of a titanate-silver nanoparticle-titanate sandwich nanostructure on a metallic titanium surface for bacteriostatic and biocompatible implants. J Mater Chem. 2012;22(36):19151-19160.
-
(2012)
J Mater Chem.
, vol.22
, Issue.36
, pp. 19151-19160
-
-
Ren, N.1
Li, R.2
Chen, L.3
-
18
-
-
77951166121
-
Deposition of silver nanoparticles on titanium surface for antibacterial effect
-
Juan L, Zhimin Z, Anchun M, Lei L, Jingchao Z. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomedicine. 2010;5:261-267.
-
(2010)
Int J Nanomedicine
, vol.5
, pp. 261-267
-
-
Juan, L.1
Zhimin, Z.2
Anchun, M.3
Lei, L.4
Jingchao, Z.5
-
19
-
-
79957901154
-
Antibacterial nano-structured titania coating incorporated with silver nanoparticles
-
Zhao L, Wang H, Huo K, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011;32(24): 5706-5716.
-
(2011)
Biomaterials
, vol.32
, Issue.24
, pp. 5706-5716
-
-
Zhao, L.1
Wang, H.2
Huo, K.3
-
20
-
-
84879905445
-
Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films
-
Xiao W, Xu J, Liu X, Hu Q, Huang J. Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. Journal of Materials Chemistry B. 2013;1(28):3477-3485.
-
(2013)
Journal of Materials Chemistry B
, vol.1
, Issue.28
, pp. 3477-3485
-
-
Xiao, W.1
Xu, J.2
Liu, X.3
Hu, Q.4
Huang, J.5
-
21
-
-
84868088481
-
In situ preparation of silver nanoparticles on biocompatible methacrylated poly(vinyl alcohol) and cellulose based polymeric nanofibers
-
Mahanta N, Valiyaveettil S. In situ preparation of silver nanoparticles on biocompatible methacrylated poly(vinyl alcohol) and cellulose based polymeric nanofibers. RSC Advances. 2012;2(30):11389-11396.
-
(2012)
RSC Advances
, vol.2
, Issue.30
, pp. 11389-11396
-
-
Mahanta, N.1
Valiyaveettil, S.2
-
22
-
-
84881397717
-
Silver nanoshells as tri-mode bactericidal agents integrating long term antibacterial, photohyperthermia and triggered Ag+ release capabilities
-
Huo D, Gao J, Guo B, et al. Silver nanoshells as tri-mode bactericidal agents integrating long term antibacterial, photohyperthermia and triggered Ag+ release capabilities. RSC Advances. 2013;3(27): 10632-10638.
-
(2013)
RSC Advances
, vol.3
, Issue.27
, pp. 10632-10638
-
-
Huo, D.1
Gao, J.2
Guo, B.3
-
23
-
-
12344298672
-
Surface modification of titanium, titanium alloys, and related materials for biomedical applications
-
Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports. 2004;47(3-4):49-121.
-
(2004)
Materials Science and Engineering: R: Reports
, vol.47
, Issue.3-4
, pp. 49-121
-
-
Liu, X.1
Chu, P.K.2
Ding, C.3
-
24
-
-
84862308296
-
Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface
-
Zheng Y, Li J, Liu X, Sun J. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. Int J Nanomedicine. 2012;7:875-884.
-
(2012)
Int J Nanomedicine
, vol.7
, pp. 875-884
-
-
Zheng, Y.1
Li, J.2
Liu, X.3
Sun, J.4
-
25
-
-
53649091733
-
Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation
-
Zhang W, Luo Y, Wang H, Jiang J, Pu S, Chu PK. Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation. Acta Biomater. 2008;4(6):2028-2036.
-
(2008)
Acta Biomater.
, vol.4
, Issue.6
, pp. 2028-2036
-
-
Zhang, W.1
Luo, Y.2
Wang, H.3
Jiang, J.4
Pu, S.5
Chu, P.K.6
-
26
-
-
67349136056
-
Biocompatibility of silver and copper plasma doped polyethylene
-
Zhang W, Luo Y, Wang H, Pu S, Chu PK. Biocompatibility of silver and copper plasma doped polyethylene. Surface and Coatings Technology. 2009;203(17-18):2550-2553.
-
(2009)
Surface and Coatings Technology
, vol.203
, Issue.17-18
, pp. 2550-2553
-
-
Zhang, W.1
Luo, Y.2
Wang, H.3
Pu, S.4
Chu, P.K.5
-
27
-
-
84862752650
-
Tailoring of mesenchymal stem cells behavior on plasma-modified polytetrafluoroethylene
-
Wang H, Kwok DT, Xu M, et al. Tailoring of mesenchymal stem cells behavior on plasma-modified polytetrafluoroethylene. Adv Mater. 2012;24(25):3315-3324.
-
(2012)
Adv Mater.
, vol.24
, Issue.25
, pp. 3315-3324
-
-
Wang, H.1
Kwok, D.T.2
Xu, M.3
-
28
-
-
78549264746
-
Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects
-
Cao H, Liu X, Meng F, Chu PK. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials. 2011;32(3):693-705.
-
(2011)
Biomaterials
, vol.32
, Issue.3
, pp. 693-705
-
-
Cao, H.1
Liu, X.2
Meng, F.3
Chu, P.K.4
-
29
-
-
78650851943
-
Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light
-
Hou W, Liu Z, Pavaskar P, Hung WH, Cronin SB. Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light. J Catal. 2011;277(2):149-153.
-
(2011)
J Catal.
, vol.277
, Issue.2
, pp. 149-153
-
-
Hou, W.1
Liu, Z.2
Pavaskar, P.3
Hung, W.H.4
Cronin, S.B.5
-
31
-
-
84879821186
-
Nanotube array controlled carbon plasma deposition
-
Qian S, Cao H, Liu X, Ding C. Nanotube array controlled carbon plasma deposition. Appl Phys Lett. 2013;102(24):243109.
-
(2013)
Appl Phys Lett.
, vol.102
, Issue.24
, pp. 243109
-
-
Qian, S.1
Cao, H.2
Liu, X.3
Ding, C.4
-
34
-
-
48449084113
-
UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings
-
Han Y, Chen D, Sun J, Zhang Y, Xu K. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Acta Biomaterialia. 2008;4(5):1518-1529.
-
(2008)
Acta Biomaterialia
, vol.4
, Issue.5
, pp. 1518-1529
-
-
Han, Y.1
Chen, D.2
Sun, J.3
Zhang, Y.4
Xu, K.5
-
35
-
-
84865251776
-
2 nanowire films for high efficiency flexible dye-sensitized solar cells
-
2 nanowire films for high efficiency flexible dye-sensitized solar cells. RSC Advances. 2012;2(20):7656-7659.
-
(2012)
RSC Advances
, vol.2
, Issue.20
, pp. 7656-7659
-
-
Wang, L.1
Xue, Z.2
Liu, X.3
Liu, B.4
-
37
-
-
84864223214
-
2 loaded with crystalline nano Ag by a one-step low-temperature hydrothermal method
-
2 loaded with crystalline nano Ag by a one-step low-temperature hydrothermal method. J Mater Chem. 2012;22(32):16306-16311.
-
(2012)
J Mater Chem.
, vol.22
, Issue.32
, pp. 16306-16311
-
-
Wang, D.1
Zhou, Z.-H.2
Yang, H.3
-
38
-
-
37049000154
-
Nanosilver: A nanoproduct in medical application
-
Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176(1):1-12.
-
(2008)
Toxicol Lett.
, vol.176
, Issue.1
, pp. 1-12
-
-
Chen, X.1
Schluesener, H.J.2
-
39
-
-
84876732930
-
Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine
-
Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev. 2013;113(7):4708-4754.
-
(2013)
Chem Rev.
, vol.113
, Issue.7
, pp. 4708-4754
-
-
Eckhardt, S.1
Brunetto, P.S.2
Gagnon, J.3
Priebe, M.4
Giese, B.5
Fromm, K.M.6
-
40
-
-
69249230781
-
The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay
-
Su HL, Chou CC, Hung DJ, et al. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials. 2009;30(30):5979-5987.
-
(2009)
Biomaterials
, vol.30
, Issue.30
, pp. 5979-5987
-
-
Su, H.L.1
Chou, C.C.2
Hung, D.J.3
-
41
-
-
84884413067
-
Activating titanium oxide coatings for orthopedic implants
-
Cao H, Liu X. Activating titanium oxide coatings for orthopedic implants. Surf Coat Technol. 2013;233:57-64.
-
(2013)
Surf Coat Technol.
, vol.233
, pp. 57-64
-
-
Cao, H.1
Liu, X.2
-
44
-
-
0037233037
-
The surface science of titanium dioxide
-
Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48(5):53-229.
-
(2003)
Surf Sci Rep.
, vol.48
, Issue.5
, pp. 53-229
-
-
Diebold, U.1
-
45
-
-
25444497481
-
The bactericidal effect of silver nanoparticles
-
Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346-2353.
-
(2005)
Nanotechnology
, vol.16
, Issue.10
, pp. 2346-2353
-
-
Morones, J.R.1
Elechiguerra, J.L.2
Camacho, A.3
-
46
-
-
0038492518
-
Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate
-
Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol. 2003;69(7):4278-4281.
-
(2003)
Appl Environ Microbiol.
, vol.69
, Issue.7
, pp. 4278-4281
-
-
Matsumura, Y.1
Yoshikata, K.2
Kunisaki, S.3
Tsuchido, T.4
-
47
-
-
25444434631
-
Interaction of silver (I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+
-
Holt KB, Bard AJ. Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry. 2005;44(39):13214-13223.
-
(2005)
Biochemistry
, vol.44
, Issue.39
, pp. 13214-13223
-
-
Holt, K.B.1
Bard, A.J.2
-
48
-
-
0034579143
-
A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus
-
Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662-668.
-
(2000)
J Biomed Mater Res.
, vol.52
, Issue.4
, pp. 662-668
-
-
Feng, Q.L.1
Wu, J.2
Chen, G.Q.3
Cui, F.Z.4
Kim, T.N.5
Kim, J.O.6
-
49
-
-
0141563491
-
2 and Gold Nanoparticles: Determination of Shift in the Fermi Level
-
2 and Gold Nanoparticles: Determination of Shift in the Fermi Level. Nano Lett. 2003;3(3):353-358.
-
(2003)
Nano Lett.
, vol.3
, Issue.3
, pp. 353-358
-
-
Jakob, M.1
Levanon, H.2
Kamat, P.V.3
-
51
-
-
0032844704
-
Bactericidal activity of photocatalytic TiO(2) reaction: Toward an understanding of its killing mechanism
-
Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol. 1999; 65(9):4094-4098.
-
(1999)
Appl Environ Microbiol.
, vol.65
, Issue.9
, pp. 4094-4098
-
-
Maness, P.C.1
Smolinski, S.2
Blake, D.M.3
Huang, Z.4
Wolfrum, E.J.5
Jacoby, W.A.6
|