메뉴 건너뛰기




Volumn , Issue , 2013, Pages 151-161

Dynamic community detection in weighted graph streams

Author keywords

[No Author keywords available]

Indexed keywords

DIGITAL STORAGE; GRAPHIC METHODS; DATA MINING;

EID: 84904422119     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972832.17     Document Type: Conference Paper
Times cited : (35)

References (18)
  • 1
    • 84860850614 scopus 로고    scopus 로고
    • Towards community detection in locally heterogeneous networks
    • C. C. Aggarwal, Y. Xie, and P. S. Yu. Towards community detection in locally heterogeneous networks. In SDM, pages 391-402, 2011.
    • (2011) SDM , pp. 391-402
    • Aggarwal, C.C.1    Xie, Y.2    Yu, P.S.3
  • 3
    • 79957876446 scopus 로고    scopus 로고
    • On clustering graph streams
    • C. C. Aggarwal, Y. Zhao, and P. S. Yu. On clustering graph streams. In SDM, pages 478-489, 2010.
    • (2010) SDM , pp. 478-489
    • Aggarwal, C.C.1    Zhao, Y.2    Yu, P.S.3
  • 4
    • 84863730251 scopus 로고    scopus 로고
    • Dense subgraph maintenance under streaming edge weight updates for real-time story identification
    • A. Angel, N. Koudas, N. Sarkas, and D. Srivastava. Dense subgraph maintenance under streaming edge weight updates for real-time story identification. In VLDB, pages 574-585, 2012.
    • (2012) VLDB , pp. 574-585
    • Angel, A.1    Koudas, N.2    Sarkas, N.3    Srivastava, D.4
  • 5
    • 36849076228 scopus 로고    scopus 로고
    • An event-based framework for characterizing the evolutionary behavior of interaction graphs
    • S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for characterizing the evolutionary behavior of interaction graphs. In KDD, pages 913-921, 2007.
    • (2007) KDD , pp. 913-921
    • Asur, S.1    Parthasarathy, S.2    Ucar, D.3
  • 6
    • 33749575022 scopus 로고    scopus 로고
    • Group formation in large social networks: Membership, growth, and evolution
    • L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social networks: Membership, growth, and evolution. In KDD, pages 44-54, 2006.
    • (2006) KDD , pp. 44-54
    • Backstrom, L.1    Huttenlocher, D.2    Kleinberg, J.3    Lan, X.4
  • 7
    • 0036040277 scopus 로고    scopus 로고
    • Similarity estimation techniques from rounding algorithms
    • M. S. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, pages 380-388, 2002.
    • (2002) STOC , pp. 380-388
    • Charikar, M.S.1
  • 8
    • 79951749405 scopus 로고    scopus 로고
    • Improved consistent sampling, weighted Minhash and L1 sketching
    • S. Ioffe. Improved consistent sampling, weighted Minhash and L1 sketching. In ICDM, pages 246-255, 2010.
    • (2010) ICDM , pp. 246-255
    • Ioffe, S.1
  • 9
    • 79851513672 scopus 로고    scopus 로고
    • A particle-and-density based evolutionary clustering method for dynamic networks
    • M.-S. Kim and J. Han. A particle-and-density based evolutionary clustering method for dynamic networks. In VLDB, pages 622-633, 2009.
    • (2009) VLDB , pp. 622-633
    • Kim, M.-S.1    Han, J.2
  • 10
    • 33749563834 scopus 로고    scopus 로고
    • Structure and evolution of online social networks
    • R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social networks. In KDD, pages 611-617, 2006.
    • (2006) KDD , pp. 611-617
    • Kumar, R.1    Novak, J.2    Tomkins, A.3
  • 11
    • 57349153901 scopus 로고    scopus 로고
    • FacetNet: A framework for analyzing communities and their evolutions in dynamic networks
    • Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. FacetNet: A framework for analyzing communities and their evolutions in dynamic networks. In WWW, pages 685-694, 2008.
    • (2008) WWW , pp. 685-694
    • Lin, Y.-R.1    Chi, Y.2    Zhu, S.3    Sundaram, H.4    Tseng, B.L.5
  • 12
    • 0012281281 scopus 로고    scopus 로고
    • Mining association rules with multiple minimum supports
    • B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum supports. In KDD, pages 337-341, 1999.
    • (1999) KDD , pp. 337-341
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 13
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review, E, 69, 2004.
    • (2004) Physical Review e , vol.69
    • Newman, M.E.J.1    Girvan, M.2
  • 15
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3:583-617, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 16
    • 65449147147 scopus 로고    scopus 로고
    • Community evolution in dynamic multi-mode networks
    • L. Tang, H. Liu, J. Zhang, and Z. Nazeri. Community evolution in dynamic multi-mode networks. In KDD, pages 677-685, 2008.
    • (2008) KDD , pp. 677-685
    • Tang, L.1    Liu, H.2    Zhang, J.3    Nazeri, Z.4
  • 17
    • 79951753673 scopus 로고    scopus 로고
    • A conscience online learning approach for kernel-based clustering
    • C.-D. Wang, J.-H. Lai, and J.-Y. Zhu. A conscience online learning approach for kernel-based clustering. In ICDM, pages 531-540, 2010.
    • (2010) ICDM , pp. 531-540
    • Wang, C.-D.1    Lai, J.-H.2    Zhu, J.-Y.3
  • 18
    • 70350647693 scopus 로고    scopus 로고
    • Adapting the right measures for κ-means clustering
    • J. Wu, H. Xiong, and J. Chen. Adapting the right measures for κ-means clustering. In KDD, pages 877-886, 2009.
    • (2009) KDD , pp. 877-886
    • Wu, J.1    Xiong, H.2    Chen, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.