-
1
-
-
29844439579
-
A new biomechanical perfusion system for ex vivo study of small biological intact vessels
-
16389529 10.1007/s10439-005-8478-5
-
Bergh, N., M. Ekman, E. Ulfhammer, M. Andersson, L. Karlsson, and S. Jern. A new biomechanical perfusion system for ex vivo study of small biological intact vessels. Ann. Biomed. Eng. 33(12):1808-1818, 2005.
-
(2005)
Ann. Biomed. Eng.
, vol.33
, Issue.12
, pp. 1808-1818
-
-
Bergh, N.1
Ekman, M.2
Ulfhammer, E.3
Andersson, M.4
Karlsson, L.5
Jern, S.6
-
2
-
-
79951755918
-
Simulation of a chain of collapsible contracting lymphangions with progressive valve closure
-
1:STN:280:DC%2BC3M%2FntFSitA%3D%3D 3356777 21186898 10.1115/1.4002799
-
Bertram, C. D., C. Macaskill, and J. E. Moore. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure. J. Biomech. Eng. 133(1):011008, 2011.
-
(2011)
J. Biomech. Eng.
, vol.133
, Issue.1
, pp. 011008
-
-
Bertram, C.D.1
Macaskill, C.2
Moore, J.E.3
-
3
-
-
70349630102
-
Phasic contractions of rat mesenteric lymphatics increase basal and phasic nitric oxide generation in vivo
-
1:CAS:528:DC%2BD1MXhtlent7%2FN 2770767 19666850 10.1152/ajpheart.00039. 2009
-
Bohlen, H. G., W. Wang, A. A. Gashev, O. Y. Gasheva, and D. C. Zawieja. Phasic contractions of rat mesenteric lymphatics increase basal and phasic nitric oxide generation in vivo. Am. J. Physiol. Heart Circ. Physiol. 297(4):H1319-328, 2009.
-
(2009)
Am. J. Physiol. Heart Circ. Physiol.
, vol.297
, Issue.4
-
-
Bohlen, H.G.1
Wang, W.2
Gashev, A.A.3
Gasheva, O.Y.4
Zawieja, D.C.5
-
4
-
-
84861794046
-
Blood flow reprograms lymphatic vessels to blood vessels
-
1:CAS:528:DC%2BC38XosFarurg%3D 3366395 22622036 10.1172/JCI57513
-
Chen, C.-Y., C. Bertozzi, Z. Zou, L. Yuan, J. S. Lee, M. Lu, S. J. Stachelek, S. Srinivasan, L. Guo, A. Vincente, P. Mericko, R. J. Levy, T. Makinen, G. Oliver, and M. L. Kahn. Blood flow reprograms lymphatic vessels to blood vessels. J. Clin. Investig. 122(6):2006-2017, 2012.
-
(2012)
J. Clin. Investig.
, vol.122
, Issue.6
, pp. 2006-2017
-
-
Chen, C.-Y.1
Bertozzi, C.2
Zou, Z.3
Yuan, L.4
Lee, J.S.5
Lu, M.6
Stachelek, S.J.7
Srinivasan, S.8
Guo, L.9
Vincente, A.10
Mericko, P.11
Levy, R.J.12
Makinen, T.13
Oliver, G.14
Kahn, M.L.15
-
5
-
-
0033746166
-
A simple physiologic pulsatile perfusion system for the study of intact vascular tissue
-
1:STN:280:DC%2BD3MzgtVSjtg%3D%3D 11086256 10.1016/S1350-4533(00)00052-7
-
Conklin, B. S., S. M. Surowiec, P. H. Lin, and C. Chen. A simple physiologic pulsatile perfusion system for the study of intact vascular tissue. Med. Eng. Phys. 22(6):441-449, 2000.
-
(2000)
Med. Eng. Phys.
, vol.22
, Issue.6
, pp. 441-449
-
-
Conklin, B.S.1
Surowiec, S.M.2
Lin, P.H.3
Chen, C.4
-
6
-
-
84861381950
-
Arduino: A low-cost multipurpose lab equipment
-
10.3758/s13428-011-0163-z
-
D'Ausilio, A. Arduino: A low-cost multipurpose lab equipment. Behav. Res. Methods 44(2):305-313, 2011.
-
(2011)
Behav. Res. Methods
, vol.44
, Issue.2
, pp. 305-313
-
-
D'Ausilio, A.1
-
7
-
-
58149295111
-
Rate-sensitive contractile responses of lymphatic vessels to circumferential stretch
-
1:CAS:528:DC%2BD1MXhtVKlsLw%3D 2670031 19001046 10.1113/jphysiol.2008. 162438
-
Davis, M. J., A. M. Davis, M. M. Lane, C. W. Ku, and A. A. Gashev. Rate-sensitive contractile responses of lymphatic vessels to circumferential stretch. J. Physiol. 587(Pt 1):165-182, Jan. 2009.
-
(2009)
J. Physiol.
, vol.587
, Issue.PART 1
, pp. 165-182
-
-
Davis, M.J.1
Davis, A.M.2
Lane, M.M.3
Ku, C.W.4
Gashev, A.A.5
-
8
-
-
33645231117
-
Measuring microlymphatic flow using fast video microscopy
-
16409081 10.1117/1.2135791
-
Dixon, J. B., D. C. Zawieja, A. A. Gashev, and G. L. Coté. Measuring microlymphatic flow using fast video microscopy. J. Biomed. Opt. 10(6):064016, 2005.
-
(2005)
J. Biomed. Opt.
, vol.10
, Issue.6
, pp. 064016
-
-
Dixon, J.B.1
Zawieja, D.C.2
Gashev, A.A.3
Coté, G.L.4
-
9
-
-
33749023584
-
Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics
-
16990218 10.1080/10739680600893909
-
Dixon, J. B., J. E. Moore Jr, G. Cote, A. A. Gashev, and D. C. Zawieja. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation 13(7):597-610, 2006.
-
(2006)
Microcirculation
, vol.13
, Issue.7
, pp. 597-610
-
-
Dixon, J.B.1
Moore Jr., J.E.2
Cote, G.3
Gashev, A.A.4
Zawieja, D.C.5
-
10
-
-
67049143567
-
Design and subspace system identification of an ex vivo vascular perfusion system
-
19275441 10.1115/1.3072895
-
El-Kurdi, M. S., J. S. Vipperman, and D. A. Vorp. Design and subspace system identification of an ex vivo vascular perfusion system. J. Biomech. Eng. 131(4):041012, 2009.
-
(2009)
J. Biomech. Eng.
, vol.131
, Issue.4
, pp. 041012
-
-
El-Kurdi, M.S.1
Vipperman, J.S.2
Vorp, D.A.3
-
11
-
-
0024668467
-
Model predictive control: Theory and practice - A survey
-
10.1016/0005-1098(89)90002-2
-
García, C. E., D. M. Prett, and M. Morari. Model predictive control: Theory and practice - a survey. Automatica 25(3):335-348, 1989.
-
(1989)
Automatica
, vol.25
, Issue.3
, pp. 335-348
-
-
García, C.E.1
Prett, D.M.2
Morari, M.3
-
12
-
-
0036588491
-
Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct
-
1:CAS:528:DC%2BD38XjvFelsL4%3D 2290276 11986387 10.1113/jphysiol.2001. 016642
-
Gashev, A. A., M. J. Davis, and D. C. Zawieja. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J. Physiol. 540(3):1023-1037, 2002.
-
(2002)
J. Physiol.
, vol.540
, Issue.3
, pp. 1023-1037
-
-
Gashev, A.A.1
Davis, M.J.2
Zawieja, D.C.3
-
13
-
-
10244247685
-
Regional variations of contractile activity in isolated rat lymphatics
-
1:CAS:528:DC%2BD2cXmvFGjtbc%3D 15371129 10.1080/10739680490476033
-
Gashev, A. A., M. J. Davis, M. D. Delp, and D. C. Zawieja. Regional variations of contractile activity in isolated rat lymphatics. Microcirculation 11(6):477-492, 2004.
-
(2004)
Microcirculation
, vol.11
, Issue.6
, pp. 477-492
-
-
Gashev, A.A.1
Davis, M.J.2
Delp, M.D.3
Zawieja, D.C.4
-
14
-
-
14344259479
-
A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries
-
1:STN:280:DC%2BD2M7msVCltA%3D%3D 15796337 10.1115/1.1824130
-
Gleason, R. L., S. P. Gray, E. Wilson, and J. D. Humphrey. A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. J. Biomech. Eng. 126(6):787-795, 2004.
-
(2004)
J. Biomech. Eng.
, vol.126
, Issue.6
, pp. 787-795
-
-
Gleason, R.L.1
Gray, S.P.2
Wilson, E.3
Humphrey, J.D.4
-
15
-
-
0342905039
-
Effect of venous and lymphatic congestion on lymph capillary pressure of the skin in healthy volunteers and patients with lymph edema
-
1:STN:280:DC%2BD3c7oslahtg%3D%3D 10720887 10.1159/000025714
-
Gretener, S. B., S. Lauchli, A. J. Leu, R. Koppensteiner, and U. Franzeck. Effect of venous and lymphatic congestion on lymph capillary pressure of the skin in healthy volunteers and patients with lymph edema. J. Vasc. Res., 37(1):61-67, 2000.
-
(2000)
J. Vasc. Res.
, vol.37
, Issue.1
, pp. 61-67
-
-
Gretener, S.B.1
Lauchli, S.2
Leu, A.J.3
Koppensteiner, R.4
Franzeck, U.5
-
16
-
-
0017652429
-
Contractile stimuli in collecting lymph vessels
-
1:STN:280:DyaE2s3hvFGitw%3D%3D 879337
-
Hargens A. R., and B. W. Zweifach. Contractile stimuli in collecting lymph vessels. Am. J. Physiol. 233(1):H57-65, 1977.
-
(1977)
Am. J. Physiol.
, vol.233
, Issue.1
-
-
Hargens, A.R.1
Zweifach, B.W.2
-
17
-
-
0026253722
-
Computer-controlled positive displacement pump for physiological flow simulation
-
1:STN:280:DyaK383mtFSntQ%3D%3D 1813750 10.1007/BF02446086
-
Holdsworth, D. W., D. W. Rickey, M. Drangova, D. J. Miller, and A. Fenster. Computer-controlled positive displacement pump for physiological flow simulation. Med. Biol. Eng. Comput. 29(6):565-570, 1991.
-
(1991)
Med. Biol. Eng. Comput.
, vol.29
, Issue.6
, pp. 565-570
-
-
Holdsworth, D.W.1
Rickey, D.W.2
Drangova, M.3
Miller, D.J.4
Fenster, A.5
-
18
-
-
33747927272
-
Minimization of cogging force in a linear permanent magnet motor
-
10.1109/20.717836
-
Hor, P. J., Z. Q. Zhu, D. Howe, and J. Rees-Jones. Minimization of cogging force in a linear permanent magnet motor. IEEE Trans. Magn. 34:3544-3547, 1998.
-
(1998)
IEEE Trans. Magn.
, vol.34
, pp. 3544-3547
-
-
Hor, P.J.1
Zhu, Z.Q.2
Howe, D.3
Rees-Jones, J.4
-
19
-
-
84874952886
-
Dual-channel in-situ optical imaging system for quantifying lipid uptake and lymphatic pump function
-
3413897 23224192 10.1117/1.JBO.17.8.086005
-
Kassis, T., A. B. Kohan, M. J. Weiler, M. E. Nipper, R. Cornelius, P. Tso, and J. B. Dixon. Dual-channel in-situ optical imaging system for quantifying lipid uptake and lymphatic pump function. J. Biomed Opt. 17(8):086005-086005, 2012.
-
(2012)
J. Biomed Opt.
, vol.17
, Issue.8
, pp. 086005-086005
-
-
Kassis, T.1
Kohan, A.B.2
Weiler, M.J.3
Nipper, M.E.4
Cornelius, R.5
Tso, P.6
Dixon, J.B.7
-
20
-
-
77749292052
-
Shear stress-induced ATP-mediated endothelial constitutive nitric oxide synthase expression in human lymphatic endothelial cells
-
1:CAS:528:DC%2BC3cXjsFGhu7c%3D 20042732 10.1152/ajpcell.00249.2009
-
Kawai, Y., Y. Yokoyama, M. Kaidoh, and T. Ohhashi. Shear stress-induced ATP-mediated endothelial constitutive nitric oxide synthase expression in human lymphatic endothelial cells. Am. J. Physiol. Cell Physiol. 298(3):C647-C655, 2010.
-
(2010)
Am. J. Physiol. Cell Physiol.
, vol.298
, Issue.3
-
-
Kawai, Y.1
Yokoyama, Y.2
Kaidoh, M.3
Ohhashi, T.4
-
22
-
-
84871446916
-
Low-cost microcontroller platform for studying lymphatic biomechanics in vitro
-
23178036 10.1016/j.jbiomech.2012.09.031
-
Kornuta, J. A., M. E. Nipper, and J. B. Dixon. Low-cost microcontroller platform for studying lymphatic biomechanics in vitro. J. Biomech. 46(1):183-186, 2013.
-
(2013)
J. Biomech.
, vol.46
, Issue.1
, pp. 183-186
-
-
Kornuta, J.A.1
Nipper, M.E.2
Dixon, J.B.3
-
23
-
-
0026316875
-
Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels
-
1:STN:280:DyaK38%2Fosl2hsQ%3D%3D 1750529
-
Kuo, L., W. M. Chilian, and M. J. Davis. Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. Am. J. Physiol. 261(6 Pt 2):H1706-15, Dec. 1991.
-
(1991)
Am. J. Physiol.
, vol.261
, Issue.6 PART 2
-
-
Kuo, L.1
Chilian, W.M.2
Davis, M.J.3
-
24
-
-
78049512780
-
Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport
-
2966032 20961304 10.1111/j.1749-6632.2010.05709.x
-
Kvietys, P. R., and D. N. Granger. Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport. Ann. N. Y. Acad. Sci. 1207(Suppl 1):E29-E43, 2010.
-
(2010)
Ann. N. Y. Acad. Sci.
, vol.1207
, Issue.SUPPL. 1
-
-
Kvietys, P.R.1
Granger, D.N.2
-
25
-
-
77954321271
-
Microvascular fluid exchange and the revised Starling principle
-
1:CAS:528:DC%2BC3cXotlChtL8%3D 20200043 10.1093/cvr/cvq062
-
Levick, J. R., and C. C. Michel. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 87(2):198-210, 2010.
-
(2010)
Cardiovasc. Res.
, vol.87
, Issue.2
, pp. 198-210
-
-
Levick, J.R.1
Michel, C.C.2
-
26
-
-
16244364050
-
Microvascular rheology and hemodynamics
-
15804970 10.1080/10739680590894966
-
Lipowsky, H. Microvascular rheology and hemodynamics. Microcirculation, 12(1):5-15, 2005.
-
(2005)
Microcirculation
, vol.12
, Issue.1
, pp. 5-15
-
-
Lipowsky, H.1
-
27
-
-
0017150839
-
Effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels
-
1:STN:280:DyaE2s%2FjtFeqtA%3D%3D 1309140 988184
-
McHale, N., and I. Roddie. Effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J. Physiol. 261(2):255-269, 1976.
-
(1976)
J. Physiol.
, vol.261
, Issue.2
, pp. 255-269
-
-
McHale, N.1
Roddie, I.2
-
28
-
-
0033135677
-
Model predictive control: Past, present and future
-
1:CAS:528:DyaK1MXivVOrsL4%3D 10.1016/S0098-1354(98)00301-9
-
Morari, M., and J. H. Lee. Model predictive control: past, present and future. Comput. Chem. Eng. 23(4-5):667-682, 1999.
-
(1999)
Comput. Chem. Eng.
, vol.23
, Issue.4-5
, pp. 667-682
-
-
Morari, M.1
Lee, J.H.2
-
29
-
-
82955193278
-
Engineering the lymphatic system
-
3568779 23408477 10.1007/s13239-011-0054-6
-
Nipper, M., and J. B. Dixon. Engineering the lymphatic system. Cardiovasc. Eng. Technol. 2(4):296-308, 2011.
-
(2011)
Cardiovasc. Eng. Technol.
, vol.2
, Issue.4
, pp. 296-308
-
-
Nipper, M.1
Dixon, J.B.2
-
30
-
-
0018962977
-
Active and passive mechanical characteristics of bovine mesenteric lymphatics
-
1:STN:280:DyaL3c3jvFOhsQ%3D%3D 7396023
-
Ohhashi, T., T. Azuma, and M. Sakaguchi. Active and passive mechanical characteristics of bovine mesenteric lymphatics. Am. J. Physiol. 239(1):H88-95, 1980.
-
(1980)
Am. J. Physiol.
, vol.239
, Issue.1
-
-
Ohhashi, T.1
Azuma, T.2
Sakaguchi, M.3
-
31
-
-
0019247209
-
Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg
-
1:STN:280:DyaL3M%2FotlKjsg%3D%3D 7446752
-
Olszewski, W., and A. Engeset. Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg. Am. J. Physiol. 239(6):H775-H783, 1980.
-
(1980)
Am. J. Physiol.
, vol.239
, Issue.6
-
-
Olszewski, W.1
Engeset, A.2
-
32
-
-
34147121965
-
Intrinsic pump-conduit behavior of lymphangions
-
1:CAS:528:DC%2BD2sXks1Kitrk%3D 17122333 10.1152/ajpregu.00258.2006
-
Quick, C. M., A. M. Venugopal, A. A. Gashev, D. C. Zawieja, and R. H. Stewart. Intrinsic pump-conduit behavior of lymphangions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:R1510-R1518, 2007.
-
(2007)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.292
-
-
Quick, C.M.1
Venugopal, A.M.2
Gashev, A.A.3
Zawieja, D.C.4
Stewart, R.H.5
-
33
-
-
73949150130
-
System and method for investigating arterial remodeling
-
19831489 10.1115/1.3207014
-
Rachev, A., Z. Dominguez, and R. Vito. System and method for investigating arterial remodeling. J. Biomech. Eng. 131(10):104501, 2009.
-
(2009)
J. Biomech. Eng.
, vol.131
, Issue.10
, pp. 104501
-
-
Rachev, A.1
Dominguez, Z.2
Vito, R.3
-
34
-
-
79953025793
-
A model of a radially expanding and contracting lymphangion
-
3086717 21377158 10.1016/j.jbiomech.2011.02.018
-
Rahbar, E., and J. E. Moore. A model of a radially expanding and contracting lymphangion. J. Biomech. 44(6):1001-1007, 2011.
-
(2011)
J. Biomech.
, vol.44
, Issue.6
, pp. 1001-1007
-
-
Rahbar, E.1
Moore, J.E.2
-
35
-
-
0018015327
-
Model predictive heuristic control: Applications to industrial processes
-
10.1016/0005-1098(78)90001-8
-
Richalet, J., A. Rault, J. L. Testud, and J. Papon. Model predictive heuristic control: Applications to industrial processes. Automatica 14(5):413-428, 1978.
-
(1978)
Automatica
, vol.14
, Issue.5
, pp. 413-428
-
-
Richalet, J.1
Rault, A.2
Testud, J.L.3
Papon, J.4
-
36
-
-
0035122850
-
Lymphedema
-
1:STN:280:DC%2BD3M7pslWgtA%3D%3D 11239847 10.1016/S0002-9343(00)00727-0
-
Rockson, S. G. Lymphedema. Am. J. Med. 110(4):288-295, 2001.
-
(2001)
Am. J. Med.
, vol.110
, Issue.4
, pp. 288-295
-
-
Rockson, S.G.1
-
37
-
-
44449169320
-
Estimating the population burden of lymphedema
-
18519968 10.1196/annals.1413.014
-
Rockson, S. G., and K. K. Rivera. Estimating the population burden of lymphedema. Ann. N. Y. Acad. Sci. 1131:147-154, 2008.
-
(2008)
Ann. N. Y. Acad. Sci.
, vol.1131
, pp. 147-154
-
-
Rockson, S.G.1
Rivera, K.K.2
-
38
-
-
77749291801
-
Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema
-
1:CAS:528:DC%2BC3cXktVOis78%3D 2832135 20110415 10.2353/ajpath.2010. 090733
-
Rutkowski, J. M., C. E. Markhus, C. C. Gyenge, K. Alitalo, H. Wiig, and M. A. Swartz. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema. Am. J. Pathol. 176(3):1122-1129, 2010.
-
(2010)
Am. J. Pathol.
, vol.176
, Issue.3
, pp. 1122-1129
-
-
Rutkowski, J.M.1
Markhus, C.E.2
Gyenge, C.C.3
Alitalo, K.4
Wiig, H.5
Swartz, M.A.6
-
39
-
-
84857026228
-
Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation
-
Sabine, A., Y. Agalarov, H. Maby-El Hajjami, M. Jaquet, R. Hägerling, C. Pollmann, D. Bebber, A. Pfenniger, N. Miura, O. Dormond, J.-M. Calmes, R. H. Adams, T. Makinen, F. Kiefer, B. R. Kwak, and T. V. Petrova. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev. Cell 22(2):430-445, 2012.
-
(2012)
Dev. Cell
, vol.22
, Issue.2
, pp. 430-445
-
-
Sabine, A.1
-
40
-
-
0035940071
-
The physiology of the lymphatic system
-
1:CAS:528:DC%2BD3MXlsF2js70%3D 11489331 10.1016/S0169-409X(01)00150-8
-
Swartz, M. A. The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 50(1-2):3-20, 2001.
-
(2001)
Adv. Drug Deliv. Rev.
, vol.50
, Issue.1-2
, pp. 3-20
-
-
Swartz, M.A.1
-
41
-
-
67650848377
-
Contractile physiology of lymphatics
-
10.1089/lrb.2009.0007
-
Zawieja, D. C. Contractile physiology of lymphatics. Lymph. Res. Biol. 7(2):87-96, 2009.
-
(2009)
Lymph. Res. Biol.
, vol.7
, Issue.2
, pp. 87-96
-
-
Zawieja, D.C.1
|