메뉴 건너뛰기




Volumn , Issue , 2014, Pages 481-492

Knowing when you're wrong: Building fast and reliable approximate query processing systems

Author keywords

Approximate query processing; Diagnostics; Error estimation

Indexed keywords

DATABASE SYSTEMS; ERROR ANALYSIS; PLASMA DIAGNOSTICS;

EID: 84904345100     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2588555.2593667     Document Type: Conference Paper
Times cited : (161)

References (40)
  • 7
    • 0039118204 scopus 로고    scopus 로고
    • Aqua: A fast decision support system using approximate query answers
    • S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A fast decision support system using approximate query answers. In VLDB, 1999.
    • (1999) VLDB
    • Acharya, S.1    Gibbons, P.B.2    Poosala, V.3
  • 8
    • 84877703682 scopus 로고    scopus 로고
    • BlinkDB: Queries with bounded errors and bounded response times on very large data
    • S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very Large Data. In EuroSys, 2013.
    • (2013) EuroSys
    • Agarwal, S.1    Mozafari, B.2    Panda, A.3    Milner, H.4    Madden, S.5    Stoica, I.6
  • 10
    • 72249107952 scopus 로고    scopus 로고
    • Scheduling shared scans of large data files
    • P. Agrawal, D. Kifer, and C. Olston. Scheduling shared scans of large data files. PVLDB, 2008.
    • (2008) PVLDB
    • Agrawal, P.1    Kifer, D.2    Olston, C.3
  • 13
    • 34547483963 scopus 로고    scopus 로고
    • Optimized stratified sampling for approximate query processing
    • S. Chaudhuri, G. Das, and V. Narasayya. Optimized stratified sampling for approximate query processing. TODS, 2007.
    • (2007) TODS
    • Chaudhuri, S.1    Das, G.2    Narasayya, V.3
  • 15
    • 77954712997 scopus 로고    scopus 로고
    • Turbo-charging estimate convergence in dbo
    • A. Dobra, C. Jermaine, F. Rusu, and F. Xu. Turbo-charging estimate convergence in dbo. PVLDB, 2(1), 2009.
    • (2009) PVLDB , vol.2 , Issue.1
    • Dobra, A.1    Jermaine, C.2    Rusu, F.3    Xu, F.4
  • 16
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • B. Efron. Bootstrap methods: another look at the jackknife. The annals of Statistics, 1979.
    • (1979) The Annals of Statistics
    • Efron, B.1
  • 18
    • 84863758667 scopus 로고    scopus 로고
    • Shareddb: Killing one thousand queries with one stone
    • G. Giannikis, G. Alonso, and D. Kossmann. Shareddb: Killing one thousand queries with one stone. PVLDB, 2012.
    • (2012) PVLDB
    • Giannikis, G.1    Alonso, G.2    Kossmann, D.3
  • 23
    • 84873118945 scopus 로고    scopus 로고
    • Early accurate results for advanced analytics on mapreduce
    • N. Laptev, K. Zeng, and C. Zaniolo. Early Accurate Results for Advanced Analytics on MapReduce. PVLDB, 5(10), 2012.
    • (2012) PVLDB , vol.5 , Issue.10
    • Laptev, N.1    Zeng, K.2    Zaniolo, C.3
  • 26
    • 77952778946 scopus 로고    scopus 로고
    • Optimal load shedding with aggregates and mining queries
    • B. Mozafari and C. Zaniolo. Optimal load shedding with aggregates and mining queries. In ICDE, 2010.
    • (2010) ICDE
    • Mozafari, B.1    Zaniolo, C.2
  • 27
    • 0022821574 scopus 로고
    • Simple random sampling from relational databases
    • F. Olken and D. Rotem. Simple random sampling from relational databases. In VLDB, 1986.
    • (1986) VLDB
    • Olken, F.1    Rotem, D.2
  • 29
    • 84863769684 scopus 로고    scopus 로고
    • Online aggregation for large mapreduce jobs
    • N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation for large mapreduce jobs. PVLDB, 4(11), 2011.
    • (2011) PVLDB , vol.4 , Issue.11
    • Pansare, N.1    Borkar, V.R.2    Jermaine, C.3    Condie, T.4
  • 30
    • 29844444248 scopus 로고    scopus 로고
    • Relational confidence bounds are easy with the bootstrap
    • A. Pol and C. Jermaine. Relational confidence bounds are easy with the bootstrap. In In SIGMOD, 2005.
    • (2005) SIGMOD
    • Pol, A.1    Jermaine, C.2
  • 31
    • 84904282315 scopus 로고    scopus 로고
    • PF-OLA: A high-performance framework for parallel online aggregation
    • C. Qin and F. Rusu. PF-OLA: a high-performance framework for parallel online aggregation. Distributed and Parallel Databases, 2013.
    • (2013) Distributed and Parallel Databases
    • Qin, C.1    Rusu, F.2
  • 33
    • 84868325513 scopus 로고    scopus 로고
    • Hive: A warehousing solution over a map-reduce framework
    • A. Thusoo et al. Hive: a warehousing solution over a map-reduce framework. PVLDB, 2(2), 2009.
    • (2009) PVLDB , vol.2 , pp. 2
    • Thusoo, A.1
  • 36
    • 84904301041 scopus 로고    scopus 로고
    • A sample-and-clean framework for fast and accurate query processing on dirty data
    • J. Wang et al. A Sample-and-Clean Framework for Fast and Accurate Query Processing on Dirty Data. In SIGMOD, 2014.
    • (2014) SIGMOD
    • Wang, J.1
  • 37
    • 84904358574 scopus 로고    scopus 로고
    • Coscan: Cooperative scan sharing in the cloud
    • X. Wang, C. Olston, A. D. Sarma, and R. C. Burns. Coscan: cooperative scan sharing in the cloud. In SoCC, 2011.
    • (2011) SoCC
    • Wang, X.1    Olston, C.2    Sarma, A.D.3    Burns, R.C.4
  • 39
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
    • M. Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In NSDI, 2012.
    • (2012) NSDI
    • Zaharia, M.1
  • 40
    • 84904301645 scopus 로고    scopus 로고
    • The analytical bootstrap: A new method for fast error estimation in approximate query processing
    • K. Zeng et al. The Analytical Bootstrap: a New Method for Fast Error Estimation in Approximate Query Processing. In SIGMOD, 2014.
    • (2014) SIGMOD
    • Zeng, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.