메뉴 건너뛰기




Volumn , Issue , 2013, Pages 425-440

Evolutionary algorithm-based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification

Author keywords

Computer aided diagnosis; Entropy; Gabor transform; Hu s invariant moments; Ovarian cancer; Probabilistic neural network

Indexed keywords

AUTOMATION; DATA HANDLING; DATA MINING; DISEASES; ENTROPY; GENETIC ALGORITHMS; IMAGE CLASSIFICATION; MEDICAL COMPUTING; NEURAL NETWORKS; PARAMETER ESTIMATION; TUMORS; ULTRASONIC APPLICATIONS;

EID: 84903988574     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-4614-8633-6_27     Document Type: Chapter
Times cited : (8)

References (44)
  • 2
    • 0029639032 scopus 로고
    • NIH consensus conference. Ovarian cancer. Screening, treatment, and follow-up
    • NIH Consensus Development Panel on Ovarian Cancer. NIH consensus conference. Ovarian cancer. Screening, treatment, and follow-up. JAMA. 1995;273:491–7.
    • (1995) JAMA , vol.273 , pp. 491-497
  • 4
    • 0030221810 scopus 로고    scopus 로고
    • Color and pulsed Doppler sonography, gray-scale imaging, and serum CA 125 in the assessment of adnexal disease
    • Predanic M, Vlahos N, Pennisi JA, Moukhtar M, Alee FA. Color and pulsed Doppler sonography, gray-scale imaging, and serum CA 125 in the assessment of adnexal disease. Obstet Gynecol. 1996;88:283–8.
    • (1996) Obstet Gynecol , vol.88 , pp. 283-288
    • Predanic, M.1    Vlahos, N.2    Pennisi, J.A.3    Moukhtar, M.4    Alee, F.A.5
  • 5
    • 0027937636 scopus 로고
    • Factors contributing to the accuracy in diagnosing ovarian malignancy by color Doppler ultrasound
    • Wu CC, Lee CN, Chen TM, Lai JI, Hsieh CY, Hwieh FJ. Factors contributing to the accuracy in diagnosing ovarian malignancy by color Doppler ultrasound. Obstet Gynecol. 1994;84:605–8.
    • (1994) Obstet Gynecol , vol.84 , pp. 605-608
    • Wu, C.C.1    Lee, C.N.2    Chen, T.M.3    Lai, J.I.4    Hsieh, C.Y.5    Hwieh, F.J.6
  • 6
    • 76149115217 scopus 로고    scopus 로고
    • MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization
    • Iyer VR, Lee SI. MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. AJR Am J Roentgenol. 2010;194:311–21.
    • (2010) AJR am J Roentgenol , vol.194 , pp. 311-321
    • Iyer, V.R.1    Lee, S.I.2
  • 7
    • 35848965033 scopus 로고    scopus 로고
    • MR imaging in ovarian cancer
    • Sohaib SA, Reznek RH. MR imaging in ovarian cancer. Cancer Imaging. 2007;7 Spec No A:S119–29.
    • (2007) Cancer Imaging , vol.7 , pp. S119-S129
    • Sohaib, S.A.1    Reznek, R.H.2
  • 8
    • 50549102118 scopus 로고    scopus 로고
    • New technologies for human cancer imaging
    • Frangioni JV. New technologies for human cancer imaging. J Clin Oncol. 2008;26:4012–21.
    • (2008) J Clin Oncol , vol.26 , pp. 4012-4021
    • Frangioni, J.V.1
  • 9
    • 0038505360 scopus 로고    scopus 로고
    • Screening for ovarian cancer
    • Anderiesz C, Quinn MA. Screening for ovarian cancer. Med J Aust. 2003;178:655–6.
    • (2003) Med J Aust , vol.178 , pp. 655-656
    • Anderiesz, C.1    Quinn, M.A.2
  • 11
    • 79958184021 scopus 로고    scopus 로고
    • Intra-and interobserver variability of 2D and 3D transvaginal sonography in the diagnosis of benign versus malignant adnexal masses
    • Pascual MA, Graupera B, Hereter L, Rotili A, Rodriguez I, Alcázar JL. Intra-and interobserver variability of 2D and 3D transvaginal sonography in the diagnosis of benign versus malignant adnexal masses. J Clin Ultrasound. 2011;39:316–21.
    • (2011) J Clin Ultrasound , vol.39 , pp. 316-321
    • Pascual, M.A.1    Graupera, B.2    Hereter, L.3    Rotili, A.4    Rodriguez, I.5    Alcázar, J.L.6
  • 14
  • 15
    • 84874419816 scopus 로고    scopus 로고
    • Analysis of carotid artery plaque and wall boundaries on CT images by using a semi-automatic method based on level set model
    • PubMed PMID: 22562690
    • Saba L, Gao H, Acharya UR, Sannia S, Ledda G, Suri JS. Analysis of carotid artery plaque and wall boundaries on CT images by using a semi-automatic method based on level set model. Neuroradiology. 2012;54(11):1207–14. PubMed PMID: 22562690.
    • (2012) Neuroradiology , vol.54 , Issue.11 , pp. 1207-1214
    • Saba, L.1    Gao, H.2    Acharya, U.R.3    Sannia, S.4    Ledda, G.5    Suri, J.S.6
  • 18
    • 45249116785 scopus 로고    scopus 로고
    • Ovarian cancer diagnosis with complementary learning fuzzy neural network
    • Tan TZ, Quek C, Ng GS, Razvi K. Ovarian cancer diagnosis with complementary learning fuzzy neural network. Artif Intell Med. 2008;43:207–22.
    • (2008) Artif Intell Med , vol.43 , pp. 207-222
    • Tan, T.Z.1    Quek, C.2    Ng, G.S.3    Razvi, K.4
  • 20
    • 77949413456 scopus 로고    scopus 로고
    • Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data
    • Tang KL, Li TH, Xiong WW, Chen K. Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data. BMC Bioinformatics. 2010;11:109.
    • (2010) BMC Bioinformatics , vol.11 , pp. 109
    • Tang, K.L.1    Li, T.H.2    Xiong, W.W.3    Chen, K.4
  • 21
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns serum to identify ovarian cancer
    • Petricoin F. Use of proteomic patterns serum to identify ovarian cancer. The Lancet. 2002;359:572–7.
    • (2002) The Lancet , vol.359 , pp. 572-577
    • Petricoin, F.1
  • 22
    • 0032893411 scopus 로고    scopus 로고
    • Sonographic prediction of malignancy in adnexal masses using an artificial neural network
    • Tailor A, Jurkovic D, Bourne TH, Collins WP, Campbell S. Sonographic prediction of malignancy in adnexal masses using an artificial neural network. Br J Obstet Gynaecol. 1999; 106:21–30.
    • (1999) Br J Obstet Gynaecol , vol.106 , pp. 21-30
    • Tailor, A.1    Jurkovic, D.2    Bourne, T.H.3    Collins, W.P.4    Campbell, S.5
  • 24
    • 0032926288 scopus 로고    scopus 로고
    • Predicting ovarian malignancy: Application of artificial neural networks to transvaginal and color Doppler flow US
    • Biagiotti R, Desii C, Vanzi E, Gacci G. Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US. Radiology. 1999;210:399–403.
    • (1999) Radiology , vol.210 , pp. 399-403
    • Biagiotti, R.1    Desii, C.2    Vanzi, E.3    Gacci, G.4
  • 25
    • 0344413027 scopus 로고    scopus 로고
    • An automatic approach for morphological analysis and malignancy evaluation of ovarian masses using B-scans
    • Zimmer Y, Tepper R, Akselrod S. An automatic approach for morphological analysis and malignancy evaluation of ovarian masses using B-scans. Ultrasound Med Biol. 2003;29:1561–70.
    • (2003) Ultrasound Med Biol , vol.29 , pp. 1561-1570
    • Zimmer, Y.1    Tepper, R.2    Akselrod, S.3
  • 26
    • 77957939537 scopus 로고    scopus 로고
    • Ovarian HistoScanning Clinical Study Group. A new computer-aided diagnostic tool for non-invasive characterisation of malignant ovarian masses: Results of a multicentre validation study
    • Lucidarme O, Akakpo JP, Granberg S, Sideri M, Levavi H, Schneider A, Autier P, Nir D, Bleiberg H, Ovarian HistoScanning Clinical Study Group. A new computer-aided diagnostic tool for non-invasive characterisation of malignant ovarian masses: results of a multicentre validation study. Eur Radiol. 2010;20:1822–30.
    • (2010) Eur Radiol , vol.20 , pp. 1822-1830
    • Lucidarme, O.1    Akakpo, J.P.2    Granberg, S.3    Sideri, M.4    Levavi, H.5    Schneider, A.6    Autier, P.7    Nir, D.8    Bleiberg, H.9
  • 27
  • 29
    • 35549012270 scopus 로고    scopus 로고
    • Three-dimensional ultrasound and three-dimensional power Doppler in the assessment of ovarian tumors
    • Laban M, Metawee H, Elyan A, Kamal M, Kamel M, Mansour G. Three-dimensional ultrasound and three-dimensional power Doppler in the assessment of ovarian tumors. Int J Gynaecol Obstet. 2007;99:201–5.
    • (2007) Int J Gynaecol Obstet , vol.99 , pp. 201-205
    • Laban, M.1    Metawee, H.2    Elyan, A.3    Kamal, M.4    Kamel, M.5    Mansour, G.6
  • 30
    • 0034931954 scopus 로고    scopus 로고
    • Three-dimensional power Doppler ultrasound improves the diagnostic accuracy for ovarian cancer prediction
    • Cohen LS, Escobar PF, Scharm C, Glimco B, Fishman DA. Three-dimensional power Doppler ultrasound improves the diagnostic accuracy for ovarian cancer prediction. Gynecol Oncol. 2001;82:40–8.
    • (2001) Gynecol Oncol , vol.82 , pp. 40-48
    • Cohen, L.S.1    Escobar, P.F.2    Scharm, C.3    Glimco, B.4    Fishman, D.A.5
  • 31
    • 84937655864 scopus 로고
    • Visual pattern recognition by moment invariants
    • Hu M. Visual pattern recognition by moment invariants. IRE Trans Info Theory. 1962;8:179–87.
    • (1962) IRE Trans Info Theory , vol.8 , pp. 179-187
    • Hu, M.1
  • 32
    • 33749335686 scopus 로고    scopus 로고
    • A review of Gabor wavelets for face recognition
    • Shen L, Bai L. A review of Gabor wavelets for face recognition. Patt Anal Appl. 2006;9:273–92.
    • (2006) Patt Anal Appl , vol.9 , pp. 273-292
    • Shen, L.1    Bai, L.2
  • 33
    • 0030213052 scopus 로고    scopus 로고
    • Texture features for browsing and retrieval of image data
    • Manjunath BS, Ma WY. Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell. 1996;18: 837–42.
    • (1996) IEEE Trans Pattern Anal Mach Intell , vol.18 , pp. 837-842
    • Manjunath, B.S.1    Ma, W.Y.2
  • 34
    • 79960497803 scopus 로고    scopus 로고
    • Shannon and non-shannon measures of entropy for statistical texture feature extraction in digitized mammograms
    • San Francisco, USA
    • Pharwaha APS, Singh B. Shannon and non-shannon measures of entropy for statistical texture feature extraction in digitized mammograms. Proceedings of the World Congress on Engineering and Computer Science (WCECS). San Francisco, USA. 2009, Vol 2. p. 2179.
    • (2009) Proceedings of the World Congress on Engineering and Computer Science (WCECS) , vol.2 , pp. 2179
    • Pharwaha, A.1    Singh, B.2
  • 35
    • 84971232387 scopus 로고
    • Guinness, gosset, fisher, and small samples
    • Box JF. Guinness, gosset, fisher, and small samples. Statist Sci. 1987;2:45–52.
    • (1987) Statist Sci , vol.2 , pp. 45-52
    • Box, J.F.1
  • 36
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht DF. Probabilistic neural networks. Neural Networks. 1990;3:109–18.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 37
    • 0032069602 scopus 로고    scopus 로고
    • Supervised texture classification using a probabilistic neural network and constraint satisfaction model
    • Raghu PP, Yegnanarayana B. Supervised texture classification using a probabilistic neural network and constraint satisfaction model. IEEE Trans Neural Netw. 1998;9:516–22.
    • (1998) IEEE Trans Neural Netw , vol.9 , pp. 516-522
    • Raghu, P.P.1    Yegnanarayana, B.2
  • 38
    • 34447572664 scopus 로고    scopus 로고
    • Detection and differentiation of breast cancer using neural classifiers with first warning thermal sensors
    • Ng EYK, Acharya UR, Keith LG, Lockwood S. Detection and differentiation of breast cancer using neural classifiers with first warning thermal sensors. Inform Sciences. 2007;177:4526–38.
    • (2007) Inform Sciences , vol.177 , pp. 4526-4538
    • Ng, E.1    Acharya, U.R.2    Keith, L.G.3    Lockwood, S.4
  • 39
    • 3142584551 scopus 로고
    • Genetic algorithms in search, optimization, and machine learning
    • Boston, MA, USA
    • Goldberg DE. Genetic algorithms in search, optimization, and machine learning. Reading: Addison Wesley Professional Publishers, Boston, MA, USA. 1989.
    • (1989) Reading: Addison Wesley Professional Publishers
    • Goldberg, D.E.1
  • 42
    • 35548994023 scopus 로고    scopus 로고
    • Fifty years of progress in gynecologic ultrasound
    • Zaidi SI. Fifty years of progress in gynecologic ultrasound. Int J Gynaecol Obstet. 2007;99:195–7.
    • (2007) Int J Gynaecol Obstet , vol.99 , pp. 195-197
    • Zaidi, S.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.