-
1
-
-
0004228159
-
DNA repair and mutagenesis
-
2nd ed. American Society for Microbiology, Washington, DC
-
Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T. 2006. DNA repair and mutagenesis, 2nd ed. American Society for Microbiology, Washington, DC.
-
(2006)
-
-
Friedberg, E.C.1
Walker, G.C.2
Siede, W.3
Wood, R.D.4
Schultz, R.A.5
Ellenberger, T.6
-
3
-
-
33847795537
-
Regulation of bacterial RecA protein function
-
Cox MM. 2007. Regulation of bacterial RecA protein function. Crit. Rev. Biochem. Mol. Biol. 42: 41-63. http://dx.doi.org/10.1080/10409230701 260258.
-
(2007)
Crit. Rev. Biochem. Mol. Biol.
, vol.42
, pp. 41-63
-
-
Cox, M.M.1
-
4
-
-
0020316054
-
The SOS regulatory system of Escherichia coli
-
Little JW, Mount DW. 1982. The SOS regulatory system of Escherichia coli. Cell 29: 11-22. http://dx.doi.org/10.1016/0092-8674(82)90085-X.
-
(1982)
Cell
, vol.29
, pp. 11-22
-
-
Little, J.W.1
Mount, D.W.2
-
5
-
-
23744446306
-
Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells
-
Kidane D, Graumann PL. 2005. Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells. J. Cell Biol. 170: 357-366. http://dx.doi.org/10.1083/jcb.200412090.
-
(2005)
J. Cell Biol.
, vol.170
, pp. 357-366
-
-
Kidane, D.1
Graumann, P.L.2
-
6
-
-
33846586523
-
Replication is required for the RecA localization response to DNA damage in Bacillus subtilis
-
Simmons LA, Grossman AD, Walker GC. 2007. Replication is required for the RecA localization response to DNA damage in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 104: 1360-1365. http://dx.doi.org/10.1073/pnas.0607123104.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 1360-1365
-
-
Simmons, L.A.1
Grossman, A.D.2
Walker, G.C.3
-
7
-
-
36849075750
-
XthA (exonuclease III) regulates loading of RecA onto DNA substrates in log phase Escherichia coli cells
-
Centore RC, Lestini R, Sandler SJ. 2008. XthA (exonuclease III) regulates loading of RecA onto DNA substrates in log phase Escherichia coli cells. Mol. Microbiol. 67: 88-101. http://dx.doi.org/10.1111/j.1365-2958.2007 .06026.x.
-
(2008)
Mol. Microbiol.
, vol.67
, pp. 88-101
-
-
Centore, R.C.1
Lestini, R.2
Sandler, S.J.3
-
8
-
-
23744466646
-
Localization of RecA in Escherichia coli K-12 using RecA-GFP
-
Renzette N, Gumlaw N, Nordman JT, Krieger M, Yeh SP, Long E, Centore R, Boonsombat R, Sandler SJ. 2005. Localization of RecA in Escherichia coli K-12 using RecA-GFP. Mol. Microbiol. 57: 1074-1085. http://dx.doi.org/10.1111/j.1365-2958.2005.04755.x.
-
(2005)
Mol. Microbiol.
, vol.57
, pp. 1074-1085
-
-
Renzette, N.1
Gumlaw, N.2
Nordman, J.T.3
Krieger, M.4
Yeh, S.P.5
Long, E.6
Centore, R.7
Boonsombat, R.8
Sandler, S.J.9
-
9
-
-
33845689742
-
DinI and RecX modulate RecA-DNA structures in Escherichia coli K-12
-
Renzette N, Gumlaw N, Sandler SJ. 2007. DinI and RecX modulate RecA-DNA structures in Escherichia coli K-12. Mol. Microbiol. 63: 103-115. http://dx.doi.org/10.1111/j.1365-2958.2006.05496.x.
-
(2007)
Mol. Microbiol.
, vol.63
, pp. 103-115
-
-
Renzette, N.1
Gumlaw, N.2
Sandler, S.J.3
-
10
-
-
78349285987
-
Nucleoid occlusion prevents cell division during replication fork arrest in Bacillus subtilis
-
Bernard R, Marquis KA, Rudner DZ. 2010. Nucleoid occlusion prevents cell division during replication fork arrest in Bacillus subtilis. Mol. Microbiol. 78: 866-882. http://dx.doi.org/10.1111/j.1365-2958.2010.07369.x.
-
(2010)
Mol. Microbiol.
, vol.78
, pp. 866-882
-
-
Bernard, R.1
Marquis, K.A.2
Rudner, D.Z.3
-
11
-
-
39849108496
-
Requirements for ATP binding and hydrolysis in RecA function in Escherichia coli
-
Renzette N, Sandler SJ. 2008. Requirements for ATP binding and hydrolysis in RecA function in Escherichia coli. Mol. Microbiol. 67: 1347-1359. http://dx.doi.org/10.1111/j.1365-2958.2008.06130.x.
-
(2008)
Mol. Microbiol.
, vol.67
, pp. 1347-1359
-
-
Renzette, N.1
Sandler, S.J.2
-
12
-
-
33645699946
-
Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: identification of new proteins at the DNA replication factory
-
Meile JC, Wu LJ, Ehrlich SD, Errington J, Noirot P. 2006. Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: identification of new proteins at the DNA replication factory. Proteomics 6: 2135-2146. http://dx.doi.org/10.1002/pmic.200500512.
-
(2006)
Proteomics
, vol.6
, pp. 2135-2146
-
-
Meile, J.C.1
Wu, L.J.2
Ehrlich, S.D.3
Errington, J.4
Noirot, P.5
-
13
-
-
0028292327
-
Homologous genetic recombination: the pieces begin to fall into place
-
Clark AJ, Sandler SJ. 1994. Homologous genetic recombination: the pieces begin to fall into place. Crit. Rev. Microbiol. 20: 125-142. http://dx .doi.org/10.3109/10408419409113552.
-
(1994)
Crit. Rev. Microbiol.
, vol.20
, pp. 125-142
-
-
Clark, A.J.1
Sandler, S.J.2
-
14
-
-
0028102267
-
Biochemistry of homologous recombination in Escherichia coli
-
Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58: 401-465.
-
(1994)
Microbiol. Rev.
, vol.58
, pp. 401-465
-
-
Kowalczykowski, S.C.1
Dixon, D.A.2
Eggleston, A.K.3
Lauder, S.D.4
Rehrauer, W.M.5
-
16
-
-
57349157777
-
RecBCD enzyme and the repair of double-strandedDNAbreaks
-
Dillingham MS, Kowalczykowski SC. 2008. RecBCD enzyme and the repair of double-strandedDNAbreaks. Microbiol. Mol. Biol. Rev. 72: 642-671. http://dx.doi.org/10.1128/MMBR.00020-08.
-
(2008)
Microbiol. Mol. Biol. Rev.
, vol.72
, pp. 642-671
-
-
Dillingham, M.S.1
Kowalczykowski, S.C.2
-
17
-
-
36049052525
-
RecBCD enzyme switches lead motor subunits in response to chi recognition
-
Spies M, Amitani I, Baskin RJ, Kowalczykowski SC. 2007. RecBCD enzyme switches lead motor subunits in response to chi recognition. Cell 131: 694-705. http://dx.doi.org/10.1016/j.cell.2007.09.023.
-
(2007)
Cell
, vol.131
, pp. 694-705
-
-
Spies, M.1
Amitani, I.2
Baskin, R.J.3
Kowalczykowski, S.C.4
-
18
-
-
0034697325
-
Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme
-
Arnold DA, Kowalczykowski SC. 2000. Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J. Biol. Chem. 275: 12261-12265. http://dx.doi.org/10.1074/jbc.275.16.12261.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 12261-12265
-
-
Arnold, D.A.1
Kowalczykowski, S.C.2
-
19
-
-
32444451553
-
The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins
-
Spies M, Kowalczykowski SC. 2006. The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins. Mol. Cell 21: 573-580. http://dx.doi.org/10.1016/j.molcel.2006.01.007.
-
(2006)
Mol. Cell
, vol.21
, pp. 573-580
-
-
Spies, M.1
Kowalczykowski, S.C.2
-
20
-
-
0028034452
-
Protein interactions in genetic recombination in Escherichia coli Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein
-
Umezu K, Kolodner RD. 1994. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J. Biol. Chem. 269: 30005-30013.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 30005-30013
-
-
Umezu, K.1
Kolodner, R.D.2
-
21
-
-
84867406977
-
RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5= terminus: implication for repair of stalled replication forks
-
Morimatsu K, Wu Y, Kowalczykowski SC. 2012. RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5= terminus: implication for repair of stalled replication forks. J. Biol. Chem. 287: 35621-35630. http://dx.doi.org/10.1074/jbc.M112.397034.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 35621-35630
-
-
Morimatsu, K.1
Wu, Y.2
Kowalczykowski, S.C.3
-
22
-
-
79960790784
-
Mechanism of RecO recruitment toDNAby single-strandedDNAbinding protein
-
Ryzhikov M, Koroleva O, Postnov D, Tran A, Korolev S. 2011. Mechanism of RecO recruitment toDNAby single-strandedDNAbinding protein. Nucleic Acids Res. 39: 6305-6314. http://dx.doi.org/10.1093/nar/gkr199.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 6305-6314
-
-
Ryzhikov, M.1
Koroleva, O.2
Postnov, D.3
Tran, A.4
Korolev, S.5
-
23
-
-
0027238208
-
Biochemical interactions of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded binding protein
-
Umezu K, Chi N-W, Kolodner RD. 1993. Biochemical interactions of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded binding protein. Proc. Natl. Acad. Sci. U. S. A. 90: 3875-3879. http://dx.doi.org/10.1073/pnas.90.9.3875.
-
(1993)
Proc. Natl. Acad. Sci. U. S. A.
, vol.90
, pp. 3875-3879
-
-
Umezu, K.1
Chi, N.-W.2
Kolodner, R.D.3
-
24
-
-
84873456473
-
RecA-promoted, RecFOR-independent progressive disassembly of replisomes stalled by helicase inactivation
-
Lia G, Rigato A, Long E, Chagneau C, Le Masson M, Allemand JF, Michel B. 2013. RecA-promoted, RecFOR-independent progressive disassembly of replisomes stalled by helicase inactivation. Mol. Cell 49: 547-557. http://dx.doi.org/10.1016/j.molcel.2012.11.018.
-
(2013)
Mol. Cell
, vol.49
, pp. 547-557
-
-
Lia, G.1
Rigato, A.2
Long, E.3
Chagneau, C.4
Le Masson, M.5
Allemand, J.F.6
Michel, B.7
-
25
-
-
0034696750
-
The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro
-
Chédin F, Ehrlich SD, Kowalczykowski SC. 2000. The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro. J. Mol. Biol. 298: 7-20. http://dx.doi.org/10.1006/jmbi.2000.3556.
-
(2000)
J. Mol. Biol.
, vol.298
, pp. 7-20
-
-
Chédin, F.1
Ehrlich, S.D.2
Kowalczykowski, S.C.3
-
26
-
-
84858796420
-
Insights into Chi recognition from the structure of an AddAB-type helicase-nuclease complex
-
Saikrishnan K, Yeeles JT, Gilhooly NS, Krajewski WW, Dillingham MS, Wigley DB. 2012. Insights into Chi recognition from the structure of an AddAB-type helicase-nuclease complex. EMBO J. 31: 1568-1578. http://dx.doi.org/10.1038/emboj.2012.9.
-
(2012)
EMBO J.
, vol.31
, pp. 1568-1578
-
-
Saikrishnan, K.1
Yeeles, J.T.2
Gilhooly, N.S.3
Krajewski, W.W.4
Dillingham, M.S.5
Wigley, D.B.6
-
27
-
-
0347725697
-
Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function
-
Fernández S, Kobayashi Y, Ogasawara N, Alonso JC. 1999. Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function. Mol. Gen. Genet. 261: 567-573. http://dx.doi.org/10.1007/s004380051002.
-
(1999)
Mol. Gen. Genet.
, vol.261
, pp. 567-573
-
-
Fernández, S.1
Kobayashi, Y.2
Ogasawara, N.3
Alonso, J.C.4
-
28
-
-
54049101177
-
Bacillus subtilis RecO nucleates RecA onto SsbA-coated single-stranded DNA
-
Manfredi C, Carrasco B, Ayora S, Alonso JC. 2008. Bacillus subtilis RecO nucleates RecA onto SsbA-coated single-stranded DNA. J. Biol. Chem. 283: 24837-24847. http://dx.doi.org/10.1074/jbc.M802002200.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24837-24847
-
-
Manfredi, C.1
Carrasco, B.2
Ayora, S.3
Alonso, J.C.4
-
29
-
-
30744446039
-
Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence ofDNAend processing
-
Sanchez H, Kidane D, Castillo Cozar M, Graumann PL, Alonso JC. 2006. Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence ofDNAend processing. J. Bacteriol. 188: 353-360. http://dx .doi.org/10.1128/JB.188.2.353-360.2006.
-
(2006)
J. Bacteriol.
, vol.188
, pp. 353-360
-
-
Sanchez, H.1
Kidane, D.2
Castillo Cozar, M.3
Graumann, P.L.4
Alonso, J.C.5
-
30
-
-
67749119784
-
Phylogenetic ubiquity and shuffling of the bacterial RecBCD and AddAB recombination complexes
-
Cromie GA. 2009. Phylogenetic ubiquity and shuffling of the bacterial RecBCD and AddAB recombination complexes. J. Bacteriol. 191: 5076-5084. http://dx.doi.org/10.1128/JB.00254-09.
-
(2009)
J. Bacteriol.
, vol.191
, pp. 5076-5084
-
-
Cromie, G.A.1
-
31
-
-
0003492044
-
Molecular biological methods for Bacillus
-
John Wiley & Sons,Chichester, United Kingdom
-
Hardwood CR, Cutting SM. 1990. Molecular biological methods for Bacillus. John Wiley & Sons,Chichester, United Kingdom.
-
(1990)
-
-
Hardwood, C.R.1
Cutting, S.M.2
-
32
-
-
0035694468
-
Visualization of mismatch repair in bacterial cells
-
Smith BT, Grossman AD, Walker GC. 2001. Visualization of mismatch repair in bacterial cells. Mol. Cell 8: 1197-1206. http://dx.doi.org/10.1016/S1097-2765(01)00402-6.
-
(2001)
Mol. Cell
, vol.8
, pp. 1197-1206
-
-
Smith, B.T.1
Grossman, A.D.2
Walker, G.C.3
-
33
-
-
0034509678
-
Movement of replicating DNA through a stationary replisome
-
Lemon KP, Grossman AD. 2000. Movement of replicating DNA through a stationary replisome. Mol. Cell 6: 1321-1330. http://dx.doi.org/10.1016/S1097-2765(00)00130-1.
-
(2000)
Mol. Cell
, vol.6
, pp. 1321-1330
-
-
Lemon, K.P.1
Grossman, A.D.2
-
34
-
-
77954378408
-
Mutations in the Bacillus subtilis beta clamp that separate its roles in DNA replication from mismatch repair
-
Dupes NM, Walsh BW, Klocko AD, Lenhart JS, Peterson HL, Gessert DA, Pavlick CE, Simmons LA. 2010. Mutations in the Bacillus subtilis beta clamp that separate its roles in DNA replication from mismatch repair. J. Bacteriol. 192: 3452-3463. http://dx.doi.org/10.1128/JB.01435-09.
-
(2010)
J. Bacteriol.
, vol.192
, pp. 3452-3463
-
-
Dupes, N.M.1
Walsh, B.W.2
Klocko, A.D.3
Lenhart, J.S.4
Peterson, H.L.5
Gessert, D.A.6
Pavlick, C.E.7
Simmons, L.A.8
-
35
-
-
80054843376
-
Mismatch repair causes the dynamic release of an essentialDNA polymerase from the replication fork
-
Klocko AD, Schroeder JW, Walsh BW, Lenhart JS, Evans ML, Simmons LA. 2011. Mismatch repair causes the dynamic release of an essentialDNA polymerase from the replication fork. Mol. Microbiol. 82: 648-663. http://dx.doi.org/10.1111/j.1365-2958.2011.07841.x.
-
(2011)
Mol. Microbiol.
, vol.82
, pp. 648-663
-
-
Klocko, A.D.1
Schroeder, J.W.2
Walsh, B.W.3
Lenhart, J.S.4
Evans, M.L.5
Simmons, L.A.6
-
36
-
-
80055120279
-
Imaging mismatch repair and cellular responses to DNA damage in Bacillus subtilis
-
Klocko AD, Crafton KM, Walsh BW, Lenhart JS, Simmons LA. 2010. Imaging mismatch repair and cellular responses to DNA damage in Bacillus subtilis. J. Vis. Exp. 2010: 1736. http://dx.doi.org/10.3791/1736.
-
(2010)
J. Vis. Exp.
, vol.2010
, pp. 1736
-
-
Klocko, A.D.1
Crafton, K.M.2
Walsh, B.W.3
Lenhart, J.S.4
Simmons, L.A.5
-
37
-
-
0016276705
-
Synthesis of 6-(phenylhydrazino)uracils and their inhibition of a replication-specific deoxyribonucleic acid polymerase
-
Wright GE, Brown NC. 1974. Synthesis of 6-(phenylhydrazino)uracils and their inhibition of a replication-specific deoxyribonucleic acid polymerase. J. Med. Chem. 17: 1277-1282. http://dx.doi.org/10.1021/jm00258a009.
-
(1974)
J. Med. Chem.
, vol.17
, pp. 1277-1282
-
-
Wright, G.E.1
Brown, N.C.2
-
38
-
-
60849101060
-
Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction
-
Simmons LA, Goranov AI, Kobayashi H, Davies BW, Yuan DS, Grossman AD, Walker GC. 2009. Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. J. Bacteriol. 191: 1152-1161. http://dx.doi .org/10.1128/JB.01292-08.
-
(2009)
J. Bacteriol.
, vol.191
, pp. 1152-1161
-
-
Simmons, L.A.1
Goranov, A.I.2
Kobayashi, H.3
Davies, B.W.4
Yuan, D.S.5
Grossman, A.D.6
Walker, G.C.7
-
39
-
-
79952238137
-
DNA damage and reactive nitrogen species are barriers to Vibrio cholerae colonization of the infant mouse intestine
-
Davies BW, Bogard RW, Dupes NM, Gerstenfeld TA, Simmons LA, Mekalanos JJ. 2011. DNA damage and reactive nitrogen species are barriers to Vibrio cholerae colonization of the infant mouse intestine. PLoS Pathog. 7: e1001295. http://dx.doi.org/10.1371/journal.ppat.1001295.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Davies, B.W.1
Bogard, R.W.2
Dupes, N.M.3
Gerstenfeld, T.A.4
Simmons, L.A.5
Mekalanos, J.J.6
-
40
-
-
37349100929
-
Multiple Ku orthologues mediate DNA non-homologous endjoining in the free-living form and during chronic infection of Sinorhizobium meliloti
-
Kobayashi H, Simmons LA, Yuan DS, Broughton WJ, Walker GC. 2008. Multiple Ku orthologues mediate DNA non-homologous endjoining in the free-living form and during chronic infection of Sinorhizobium meliloti. Mol. Microbiol. 67: 350-363. http://dx.doi.org/10.1111/j .1365-2958.2007.06036.x.
-
(2008)
Mol. Microbiol.
, vol.67
, pp. 350-363
-
-
Kobayashi, H.1
Simmons, L.A.2
Yuan, D.S.3
Broughton, W.J.4
Walker, G.C.5
-
41
-
-
84999861294
-
Complete genome sequence of Bacillus subtilis strain PY79
-
Schroeder JW, Simmons LA. 2013. Complete genome sequence of Bacillus subtilis strain PY79. Genome Announc. 1: e01085-13. http://dx.doi.org/10.1128/genomeA.01085-13.
-
(2013)
Genome Announc.
, vol.1
-
-
Schroeder, J.W.1
Simmons, L.A.2
-
42
-
-
67649884743
-
Fast and accurate short read alignment with Burrows-Wheeler transform
-
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760. http://dx.doi.org/10.1093/bioinformatics/btp324.
-
(2009)
Bioinformatics
, vol.25
, pp. 1754-1760
-
-
Li, H.1
Durbin, R.2
-
43
-
-
84893945960
-
RecA bundles mediate homology pairing between distant sisters during DNA break repair
-
22 December
-
Lesterlin C, Ball G, Schermelleh L, Sherratt DJ. 22 December 2013. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature. http://dx.doi.org/10.1038/nature12868.
-
(2013)
Nature
-
-
Lesterlin, C.1
Ball, G.2
Schermelleh, L.3
Sherratt, D.J.4
-
44
-
-
3042651097
-
Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids
-
Kidane D, Sanchez H, Alonso JC, Graumann PL. 2004. Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. Mol. Microbiol. 52: 1627-1639. http://dx.doi.org/10.1111/j .1365-2958.2004.04102.x.
-
(2004)
Mol. Microbiol.
, vol.52
, pp. 1627-1639
-
-
Kidane, D.1
Sanchez, H.2
Alonso, J.C.3
Graumann, P.L.4
-
45
-
-
0035807079
-
Repair of DNA interstrand cross-links
-
Dronkert ML, Kanaar R. 2001. Repair of DNA interstrand cross-links. Mutat. Res. 486: 217-247. http://dx.doi.org/10.1016/S0921-8777(01)00092-1.
-
(2001)
Mutat. Res.
, vol.486
, pp. 217-247
-
-
Dronkert, M.L.1
Kanaar, R.2
-
46
-
-
0017228745
-
The mechanism of DNA breakage by phleomycin in vitro
-
Sleigh MJ. 1976. The mechanism of DNA breakage by phleomycin in vitro. Nucleic Acids Res. 3: 891-901. http://dx.doi.org/10.1093/nar/3.4.891.
-
(1976)
Nucleic Acids Res.
, vol.3
, pp. 891-901
-
-
Sleigh, M.J.1
-
47
-
-
0015534847
-
Inhibition of a DNA polymerase from Bacillus subtilis by hydroxyphenylazopyrimidines
-
Gass KB, Low RL, Cozzarelli NR. 1973. Inhibition of a DNA polymerase from Bacillus subtilis by hydroxyphenylazopyrimidines. Proc. Natl. Acad. Sci. U. S. A. 70: 103-107. http://dx.doi.org/10.1073/pnas.70.1.103.
-
(1973)
Proc. Natl. Acad. Sci. U. S. A.
, vol.70
, pp. 103-107
-
-
Gass, K.B.1
Low, R.L.2
Cozzarelli, N.R.3
-
48
-
-
24644506093
-
A transcriptional response to replication status mediated by the conserved bacterial replication protein DnaA
-
Goranov AI, Katz L, Breier AM, Burge CB, Grossman AD. 2005. A transcriptional response to replication status mediated by the conserved bacterial replication protein DnaA. Proc. Natl. Acad. Sci. U. S. A. 102: 12932-12937. http://dx.doi.org/10.1073/pnas.0506174102.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 12932-12937
-
-
Goranov, A.I.1
Katz, L.2
Breier, A.M.3
Burge, C.B.4
Grossman, A.D.5
-
49
-
-
33746660393
-
Characterization of the global transcriptional responses to different types of DNA damage and disruption of replication in Bacillus subtilis
-
Goranov AI, Kuester-Schoeck E, Wang JD, Grossman AD. 2006. Characterization of the global transcriptional responses to different types of DNA damage and disruption of replication in Bacillus subtilis. J. Bacteriol. 188: 5595-5605. http://dx.doi.org/10.1128/JB.00342-06.
-
(2006)
J. Bacteriol.
, vol.188
, pp. 5595-5605
-
-
Goranov, A.I.1
Kuester-Schoeck, E.2
Wang, J.D.3
Grossman, A.D.4
-
50
-
-
0015583791
-
Hydroxyphenylazopyrimidines: characterization of the active forms and their inhibitory action on a DNA polymerase from Bacillus subtilis
-
Mackenzie JM, Neville MM, Wright GE, Brown NC. 1973. Hydroxyphenylazopyrimidines: characterization of the active forms and their inhibitory action on a DNA polymerase from Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 70: 512-516. http://dx.doi.org/10.1073/pnas.70.2.512.
-
(1973)
Proc. Natl. Acad. Sci. U. S. A.
, vol.70
, pp. 512-516
-
-
Mackenzie, J.M.1
Neville, M.M.2
Wright, G.E.3
Brown, N.C.4
-
51
-
-
0015511196
-
Inhibition of a discrete bacterial DNA polymerase by 6-(p-hydroxyphenylazo)-uracil and 6-(p-hydroxyphenylazo-)-isocytosine
-
Neville MM, Brown NC. 1972. Inhibition of a discrete bacterial DNA polymerase by 6-(p-hydroxyphenylazo)-uracil and 6-(p-hydroxyphenylazo-)-isocytosine. Nat. New Biol. 240: 80-82.
-
(1972)
Nat. New Biol.
, vol.240
, pp. 80-82
-
-
Neville, M.M.1
Brown, N.C.2
-
52
-
-
0014877377
-
6-(p-Hydroxyphenylazo)-uracil: a selective inhibitor of host DNA replication in phage-infected Bacillus subtilis
-
Brown NC. 1970. 6-(p-Hydroxyphenylazo)-uracil: a selective inhibitor of host DNA replication in phage-infected Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 67: 1454-1461. http://dx.doi.org/10.1073/pnas.67.3.1454.
-
(1970)
Proc. Natl. Acad. Sci. U. S. A.
, vol.67
, pp. 1454-1461
-
-
Brown, N.C.1
-
53
-
-
84895745359
-
RecD2 helicase limits replication fork stress in Bacillus subtilis
-
Walsh BW, Bolz SA, Wessel SR, Schroeder JW, Keck JL, Simmons LA. 2014. RecD2 helicase limits replication fork stress in Bacillus subtilis. J. Bacteriol. 196: 1359-1368. http://dx.doi.org/10.1128/JB.01475-13.
-
(2014)
J. Bacteriol.
, vol.196
, pp. 1359-1368
-
-
Walsh, B.W.1
Bolz, S.A.2
Wessel, S.R.3
Schroeder, J.W.4
Keck, J.L.5
Simmons, L.A.6
-
54
-
-
33847383586
-
Nutritional control of elongation of DNA replication by (p)ppGpp
-
Wang JD, Sanders GM, Grossman AD. 2007. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128: 865-875. http://dx .doi.org/10.1016/j.cell.2006.12.043.
-
(2007)
Cell
, vol.128
, pp. 865-875
-
-
Wang, J.D.1
Sanders, G.M.2
Grossman, A.D.3
-
55
-
-
84868615392
-
Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA
-
Bell JC, Plank JL, Dombrowski CC, Kowalczykowski SC. 2012. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature 491: 274-278. http://dx.doi.org/10.1038/nature11598.
-
(2012)
Nature
, vol.491
, pp. 274-278
-
-
Bell, J.C.1
Plank, J.L.2
Dombrowski, C.C.3
Kowalczykowski, S.C.4
-
56
-
-
78650691470
-
The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks
-
Costes A, Lecointe F, McGovern S, Quevillon-Cheruel S, Polard P. 2010. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet. 6: e1001238. http://dx.doi.org/10.1371/journal.pgen.1001238.
-
(2010)
PLoS Genet.
, vol.6
-
-
Costes, A.1
Lecointe, F.2
McGovern, S.3
Quevillon-Cheruel, S.4
Polard, P.5
-
57
-
-
54349118941
-
SSB as an organizer/mobilizer of genome maintenance complexes
-
Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. 2008. SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 43: 289-318. http://dx.doi.org/10.1080/10409230802341296.
-
(2008)
Crit. Rev. Biochem. Mol. Biol.
, vol.43
, pp. 289-318
-
-
Shereda, R.D.1
Kozlov, A.G.2
Lohman, T.M.3
Cox, M.M.4
Keck, J.L.5
-
58
-
-
0021345031
-
Characterization of the Escherichia coli SSB-113 mutant single-stranded DNA-binding protein Cloning of the gene, DNA and protein sequence analysis, high pressure liquid chromatography peptide mapping, and DNA-binding studies
-
Chase JW, L'Italien JJ, Murphy JB, Spicer EK, Williams KR. 1984. Characterization of the Escherichia coli SSB-113 mutant single-stranded DNA-binding protein. Cloning of the gene, DNA and protein sequence analysis, high pressure liquid chromatography peptide mapping, and DNA-binding studies. J. Biol. Chem. 259: 805-814.
-
(1984)
J. Biol. Chem.
, vol.259
, pp. 805-814
-
-
Chase, J.W.1
L'Italien, J.J.2
Murphy, J.B.3
Spicer, E.K.4
Williams, K.R.5
-
59
-
-
0030014904
-
In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein
-
Curth U, Genschel J, Urbanke C, Greipel J. 1996. In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Res. 24: 2706-2711.
-
(1996)
Nucleic Acids Res.
, vol.24
, pp. 2706-2711
-
-
Curth, U.1
Genschel, J.2
Urbanke, C.3
Greipel, J.4
-
60
-
-
0017667011
-
Genetic mapping of the lexC-113 mutation
-
Johnson BF. 1977. Genetic mapping of the lexC-113 mutation. Mol. Gen. Genet. 157: 91-97.
-
(1977)
Mol. Gen. Genet.
, vol.157
, pp. 91-97
-
-
Johnson, B.F.1
-
61
-
-
34948867321
-
Anticipating chromosomal replication fork arrest: SSBtargets repairDNAhelicases to active forks
-
Lecointe F, Serena C, Velten M, Costes A, McGovern S, Meile JC, Errington J, Ehrlich SD, Noirot P, Polard P. 2007. Anticipating chromosomal replication fork arrest: SSBtargets repairDNAhelicases to active forks.EMBO J. 26: 4239-4251. http://dx.doi.org/10.1038/sj.emboj.7601848.
-
(2007)
EMBO J
, vol.26
, pp. 4239-4251
-
-
Lecointe, F.1
Serena, C.2
Velten, M.3
Costes, A.4
McGovern, S.5
Meile, J.C.6
Errington, J.7
Ehrlich, S.D.8
Noirot, P.9
Polard, P.10
-
62
-
-
84887407114
-
Multiple C-terminal tails within a single E coli SSB homotetramer coordinate DNA replication and repair
-
Antony E, Weiland E, Yuan Q, Manhart CM, Nguyen B, Kozlov AG, McHenry CS, Lohman TM. 2013. Multiple C-terminal tails within a single E. coli SSB homotetramer coordinate DNA replication and repair. J. Mol. Biol. 425: 4802-4819. http://dx.doi.org/10.1016/j.jmb.2013.08.021.
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 4802-4819
-
-
Antony, E.1
Weiland, E.2
Yuan, Q.3
Manhart, C.M.4
Nguyen, B.5
Kozlov, A.G.6
McHenry, C.S.7
Lohman, T.M.8
-
63
-
-
84876347637
-
A dual role for mycobacterial RecO in RecAdependent homologous recombination and RecA-independent singlestrand annealing
-
Gupta R, Ryzhikov M, Koroleva O, Unciuleac M, Shuman S, Korolev S, Glickman MS. 2013. A dual role for mycobacterial RecO in RecAdependent homologous recombination and RecA-independent singlestrand annealing. Nucleic Acids Res. 41: 2284-2295. http://dx.doi.org/10 .1093/nar/gks1298.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 2284-2295
-
-
Gupta, R.1
Ryzhikov, M.2
Koroleva, O.3
Unciuleac, M.4
Shuman, S.5
Korolev, S.6
Glickman, M.S.7
-
64
-
-
48249095036
-
Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I
-
Lu D, Keck JL. 2008. Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I. Proc. Natl. Acad. Sci. U. S. A. 105: 9169-9174. http://dx.doi.org/10.1073/pnas.0800741105.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 9169-9174
-
-
Lu, D.1
Keck, J.L.2
-
65
-
-
34547121734
-
A central role for SSB in Escherichia coli RecQ DNA helicase function
-
Shereda RD, Bernstein DA, Keck JL. 2007. A central role for SSB in Escherichia coli RecQ DNA helicase function. J. Biol. Chem. 282: 19247-19258. http://dx.doi.org/10.1074/jbc.M608011200.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 19247-19258
-
-
Shereda, R.D.1
Bernstein, D.A.2
Keck, J.L.3
|