-
1
-
-
34848853530
-
Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase
-
DOI 10.1088/1367-2630/9/9/356, PII S1367263007519348
-
S. Murakami, New J. Phys. 9, 356 (2007). NJOPFM 1367-2630 10.1088/1367-2630/9/9/356 (Pubitemid 47511005)
-
(2007)
New Journal of Physics
, vol.9
, pp. 356
-
-
Murakami, S.1
-
2
-
-
79961101526
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.83.205101
-
X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.83.205101
-
(2011)
Phys. Rev. B
, vol.83
, pp. 205101
-
-
Wan, X.1
Turner, A.M.2
Vishwanath, A.3
Savrasov, S.Y.4
-
3
-
-
80053090944
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.107.127205
-
A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.127205
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 127205
-
-
Burkov, A.A.1
Balents, L.2
-
4
-
-
84855414393
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.84.235126
-
A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.235126
-
(2011)
Phys. Rev. B
, vol.84
, pp. 235126
-
-
Burkov, A.A.1
Hook, M.D.2
Balents, L.3
-
5
-
-
80052392003
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.84.075129
-
K.-Y. Yang, Y.-M. Lu, and Y. Ran, Phys. Rev. B 84, 075129 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.075129
-
(2011)
Phys. Rev. B
, vol.84
, pp. 075129
-
-
Yang, K.-Y.1
Lu, Y.-M.2
Ran, Y.3
-
6
-
-
84856418433
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.85.035103
-
G. B. Halász and L. Balents, Phys. Rev. B 85, 035103 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.85.035103
-
(2012)
Phys. Rev. B
, vol.85
, pp. 035103
-
-
Halász, G.B.1
Balents, L.2
-
7
-
-
84860263311
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.85.165110
-
A. A. Zyuzin, S. Wu, and A. A. Burkov, Phys. Rev. B 85, 165110 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.85.165110
-
(2012)
Phys. Rev. B
, vol.85
, pp. 165110
-
-
Zyuzin, A.A.1
Wu, S.2
Burkov, A.A.3
-
8
-
-
84862999202
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.108.266802
-
C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Phys. Rev. Lett. 108, 266802 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.266802
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 266802
-
-
Fang, C.1
Gilbert, M.J.2
Dai, X.3
Bernevig, B.A.4
-
9
-
-
84894517331
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.89.081106
-
D. Bulmash, C.-X. Liu, and X.-L. Qi, Phys. Rev. B 89, 081106 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.89.081106
-
(2014)
Phys. Rev. B
, vol.89
, pp. 081106
-
-
Bulmash, D.1
Liu, C.-X.2
Qi, X.-L.3
-
11
-
-
84859150790
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.85.033640
-
J.-H. Jiang, Phys. Rev. A 85, 033640 (2012). PLRAAN 1050-2947 10.1103/PhysRevA.85.033640
-
(2012)
Phys. Rev. A
, vol.85
, pp. 033640
-
-
Jiang, J.-H.1
-
12
-
-
84879974111
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.87.245112
-
T. Ojanen, Phys. Rev. B 87, 245112 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.245112
-
(2013)
Phys. Rev. B
, vol.87
, pp. 245112
-
-
Ojanen, T.1
-
14
-
-
28844477796
-
Quantum Spin hall effect in graphene
-
DOI 10.1103/PhysRevLett.95.226801, 226801
-
C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.226801 (Pubitemid 41776999)
-
(2005)
Physical Review Letters
, vol.95
, Issue.22
, pp. 1-4
-
-
Kane, C.L.1
Mele, E.J.2
-
15
-
-
28844477210
-
Z2 topological order and the quantum spin hall effect
-
DOI 10.1103/PhysRevLett.95.146802, 146802
-
C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.146802 (Pubitemid 41777602)
-
(2005)
Physical Review Letters
, vol.95
, Issue.14
, pp. 1-4
-
-
Kane, C.L.1
Mele, E.J.2
-
16
-
-
3442880129
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.49.405
-
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982). PRLTAO 0031-9007 10.1103/PhysRevLett.49.405
-
(1982)
Phys. Rev. Lett.
, vol.49
, pp. 405
-
-
Thouless, D.J.1
Kohmoto, M.2
Nightingale, M.P.3
Den Nijs, M.4
-
17
-
-
84859626344
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.108.140405
-
S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.140405
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 140405
-
-
Young, S.M.1
Zaheer, S.2
Teo, J.C.Y.3
Kane, C.L.4
Mele, E.J.5
Rappe, A.M.6
-
18
-
-
84861676249
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.85.195320
-
Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.85. 195320
-
(2012)
Phys. Rev. B
, vol.85
, pp. 195320
-
-
Wang, Z.1
Sun, Y.2
Chen, X.-Q.3
Franchini, C.4
Xu, G.5
Weng, H.6
Dai, X.7
Fang, Z.8
-
19
-
-
84884871887
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.88.125427
-
Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.88.125427
-
(2013)
Phys. Rev. B
, vol.88
, pp. 125427
-
-
Wang, Z.1
Weng, H.2
Wu, Q.3
Dai, X.4
Fang, Z.5
-
20
-
-
84892905462
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.112.036403
-
J. A. Steinberg, S. M. Young, S. Zaheer, C. L. Kane, E. J. Mele, and A. M. Rappe, Phys. Rev. Lett. 112, 036403 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.036403
-
(2014)
Phys. Rev. Lett.
, vol.112
, pp. 036403
-
-
Steinberg, J.A.1
Young, S.M.2
Zaheer, S.3
Kane, C.L.4
Mele, E.J.5
Rappe, A.M.6
-
21
-
-
84903736017
-
-
arXiv:1309.7892.
-
M. Neupane, S. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, arXiv:1309.7892.
-
-
-
Neupane, M.1
Xu, S.2
Sankar, R.3
Alidoust, N.4
Bian, G.5
Liu, C.6
Belopolski, I.7
Chang, T.-R.8
Jeng, H.-T.9
Lin, H.10
Bansil, A.11
Chou, F.12
Hasan, M.Z.13
-
22
-
-
84903715518
-
-
arXiv:1309.7978.
-
S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buechner, and R. J. Cava, arXiv:1309.7978.
-
-
-
Borisenko, S.1
Gibson, Q.2
Evtushinsky, D.3
Zabolotnyy, V.4
Buechner, B.5
Cava, R.J.6
-
23
-
-
84894279981
-
-
SCIEAS 0036-8075 10.1126/science.1245085
-
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Science 343, 864 (2014). SCIEAS 0036-8075 10.1126/science.1245085
-
(2014)
Science
, vol.343
, pp. 864
-
-
Liu, Z.K.1
Zhou, B.2
Zhang, Y.3
Wang, Z.J.4
Weng, H.M.5
Prabhakaran, D.6
Mo, S.-K.7
Shen, Z.X.8
Fang, Z.9
Dai, X.10
Hussain, Z.11
Chen, Y.L.12
-
24
-
-
65649108305
-
-
10.1063/1.3149495
-
A. Kitaev, AIP Conf. Proc. 1134, 22 (2009). 10.1063/1.3149495
-
(2009)
AIP Conf. Proc.
, vol.1134
, pp. 22
-
-
Kitaev, A.1
-
25
-
-
84884854728
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.88.125129
-
T. Morimoto and A. Furusaki, Phys. Rev. B 88, 125129 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.88.125129
-
(2013)
Phys. Rev. B
, vol.88
, pp. 125129
-
-
Morimoto, T.1
Furusaki, A.2
-
26
-
-
84903706921
-
-
Without these assumptions, gap-closing (Dirac or Weyl) points can be always gapped out by intervalley scattering.
-
Without these assumptions, gap-closing (Dirac or Weyl) points can be always gapped out by intervalley scattering.
-
-
-
-
27
-
-
84903736283
-
-
For systems of interacting fermions, the right-hand side of Eq. (5) is replaced with fermion number parity, (Equation presented), where (Equation presented) is the number of fermions.
-
For systems of interacting fermions, the right-hand side of Eq. (5) is replaced with fermion number parity, (Equation presented), where (Equation presented) is the number of fermions.
-
-
-
-
28
-
-
0000023684
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.55.1142
-
A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997). PRBMDO 0163-1829 10.1103/PhysRevB.55.1142
-
(1997)
Phys. Rev. B
, vol.55
, pp. 1142
-
-
Altland, A.1
Zirnbauer, M.R.2
-
30
-
-
33845708953
-
Quantum spin hall effect and topological phase transition in HgTe quantum wells
-
DOI 10.1126/science.1133734
-
B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006). SCIEAS 0036-8075 10.1126/science.1133734 (Pubitemid 44969083)
-
(2006)
Science
, vol.314
, Issue.5806
, pp. 1757-1761
-
-
Bernevig, B.A.1
Hughes, T.L.2
Zhang, S.-C.3
-
33
-
-
27144492596
-
Stability of fermi surfaces and K theory
-
DOI 10.1103/PhysRevLett.95.016405, 016405
-
P. Hořava, Phys. Rev. Lett. 95, 016405 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.016405 (Pubitemid 41506384)
-
(2005)
Physical Review Letters
, vol.95
, Issue.1
, pp. 1-4
-
-
Horava, P.1
-
34
-
-
84879098260
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.110.240404
-
Y. X. Zhao and Z. D. Wang, Phys. Rev. Lett. 110, 240404 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.240404
-
(2013)
Phys. Rev. Lett.
, vol.110
, pp. 240404
-
-
Zhao, Y.X.1
Wang, Z.D.2
-
35
-
-
84879359654
-
-
NJOPFM 1367-2630 10.1088/1367-2630/15/6/065001
-
S. Matsuura, P.-Y. Chang, A. P. Schnyder, and S. Ryu, New J. Phys. 15, 065001 (2013). NJOPFM 1367-2630 10.1088/1367-2630/15/6/065001
-
(2013)
New J. Phys.
, vol.15
, pp. 065001
-
-
Matsuura, S.1
Chang, P.-Y.2
Schnyder, A.P.3
Ryu, S.4
-
37
-
-
84871537179
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.86.214511
-
M. A. Silaev and G. E. Volovik, Phys. Rev. B 86, 214511 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.86.214511
-
(2012)
Phys. Rev. B
, vol.86
, pp. 214511
-
-
Silaev, M.A.1
Volovik, G.E.2
-
38
-
-
33744936028
-
Nodal structure of superconductors with time-reversal invariance and Z2 topological number
-
DOI 10.1103/PhysRevB.73.214502
-
M. Sato, Phys. Rev. B 73, 214502 (2006). PRBMDO 1098-0121 10.1103/PhysRevB.73.214502 (Pubitemid 43848237)
-
(2006)
Physical Review B - Condensed Matter and Materials Physics
, vol.73
, Issue.21
, pp. 214502
-
-
Sato, M.1
-
39
-
-
77955210446
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.81.134515
-
B. Béri, Phys. Rev. B 81, 134515 (2010). PRBMDO 1098-0121 10.1103/PhysRevB.81.134515
-
(2010)
Phys. Rev. B
, vol.81
, pp. 134515
-
-
Béri, B.1
-
40
-
-
80052365703
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.84.060504
-
A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.060504
-
(2011)
Phys. Rev. B
, vol.84
, pp. 060504
-
-
Schnyder, A.P.1
Ryu, S.2
-
42
-
-
80053627243
-
-
JTPLA2 0021-3640 10.1134/S0021364011150045
-
T. Heikkilä, N. Kopnin, and G. Volovik, JETP Lett. 94, 233 (2011). JTPLA2 0021-3640 10.1134/S0021364011150045
-
(2011)
JETP Lett.
, vol.94
, pp. 233
-
-
Heikkilä, T.1
Kopnin, N.2
Volovik, G.3
-
43
-
-
79551686764
-
-
JUPSAU 0031-9015 10.1143/JPSJ.79.113601
-
Y. Tsutsumi, T. Mizushima, M. Ichioka, and K. Machida, J. Phys. Soc. Jpn. 79, 113601 (2010). JUPSAU 0031-9015 10.1143/JPSJ.79.113601
-
(2010)
J. Phys. Soc. Jpn.
, vol.79
, pp. 113601
-
-
Tsutsumi, Y.1
Mizushima, T.2
Ichioka, M.3
Machida, K.4
-
44
-
-
84866387971
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.86.094512
-
F. Wang and D.-H. Lee, Phys. Rev. B 86, 094512 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.86.094512
-
(2012)
Phys. Rev. B
, vol.86
, pp. 094512
-
-
Wang, F.1
Lee, D.-H.2
-
45
-
-
84881510955
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.111.056403
-
F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 111, 056403 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.056403
-
(2013)
Phys. Rev. Lett.
, vol.111
, pp. 056403
-
-
Zhang, F.1
Kane, C.L.2
Mele, E.J.3
-
46
-
-
84883312952
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.88.064507
-
H. Yao and S. Ryu, Phys. Rev. B 88, 064507 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.88.064507
-
(2013)
Phys. Rev. B
, vol.88
, pp. 064507
-
-
Yao, H.1
Ryu, S.2
-
48
-
-
84893089861
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.89.035117
-
T. Morimoto and A. Furusaki, Phys. Rev. B 89, 035117 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.89.035117
-
(2014)
Phys. Rev. B
, vol.89
, pp. 035117
-
-
Morimoto, T.1
Furusaki, A.2
-
49
-
-
84903743181
-
-
The extension problem in Eq. (32) is reduced to (Equation presented) as follows. First, (Equation presented) is isomorphic to the algebra of real 2(Equation presented)2 matrices (Equation presented). That is, if we take the representation (Equation presented), an element of (Equation presented) is written as (Equation presented) with (Equation presented), which is a general form of a real 2(Equation presented)2 matrix. Thus the extension problem in Eq. (32) is equivalent to (Equation presented). Next, (Equation presented) can be discarded from the above extension, because faithful representations of (Equation presented) in real matrices have a natural one-to-one correspondence with those of (Equation presented).
-
The extension problem in Eq. (32) is reduced to (Equation presented) as follows. First, (Equation presented) is isomorphic to the algebra of real 2(Equation presented)2 matrices (Equation presented). That is, if we take the representation (Equation presented), an element of (Equation presented) is written as (Equation presented) with (Equation presented), which is a general form of a real 2(Equation presented)2 matrix. Thus the extension problem in Eq. (32) is equivalent to (Equation presented). Next, (Equation presented) can be discarded from the above extension, because faithful representations of (Equation presented) in real matrices have a natural one-to-one correspondence with those of (Equation presented).
-
-
-
-
50
-
-
84903734541
-
-
We take the tensor product of (Equation presented) and each side of Eq. (40) and make use of the following relations: Clp,q - Cl2,0≃Clq+2,p, i.e., {e1,.,ep;ep+1,.,ep+q} - {á1,á2;} ≃ {á1,á2, á1á2ep+1,.,á1á2ep+q;á1á2e1,., á1á2ep}, and Clp,q - Cl0,2≃Clq,p+2, i.e., {e1,.,ep;ep+1,.,ep+q} - {;á1,á2} ≃ {á1á2ep+1,., á1á2ep+q;á1,á2,á1á2e1,., á1á2ep}. The tensor product with (Equation presented) does not change the extension problem.
-
We take the tensor product of (Equation presented) and each side of Eq. (40) and make use of the following relations: Clp,q - Cl2,0≃Clq+2,p, i.e., {e1,...,ep;ep+1,...,ep+q} - {á1,á2;} ≃ {á1,á2, á1á2ep+1,...,á1á2ep+q;á1á2e1,..., á1á2ep}, and Clp,q - Cl0,2≃Clq,p+2, i.e., {e1,...,ep;ep+1,...,ep+q} - {;á1,á2} ≃ {á1á 2ep+1,...,á1á2ep+q;á1,á2,á1á2e1,..., á1á2ep}. The tensor product with (Equation presented) does not change the extension problem.
-
-
-
-
51
-
-
0032561609
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.81.4704
-
T. Senthil, M. P. A. Fisher, L. Balents, and C. Nayak, Phys. Rev. Lett. 81, 4704 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.81.4704
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 4704
-
-
Senthil, T.1
Fisher, M.P.A.2
Balents, L.3
Nayak, C.4
-
52
-
-
84903699535
-
-
In addition, when (Equation presented) is conserved in a (Equation presented) Weyl semimetal protected by the symmetries in Eq. (10), helical Fermi arcs contribute (Equation presented) to spin Hall conductivity, just like chiral Fermi arcs in conventional Weyl semimetals contribute (Equation presented) to Hall conductivity [2,3] (which can be described by a (Equation presented) term in the effective action of electromagnetic fields [61,62]).
-
In addition, when (Equation presented) is conserved in a (Equation presented) Weyl semimetal protected by the symmetries in Eq. (10), helical Fermi arcs contribute (Equation presented) to spin Hall conductivity, just like chiral Fermi arcs in conventional Weyl semimetals contribute (Equation presented) to Hall conductivity [2,3] (which can be described by a (Equation presented) term in the effective action of electromagnetic fields [61,62]).
-
-
-
-
54
-
-
25544457637
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.33.3263
-
E. Fradkin, Phys. Rev. B 33, 3263 (1986). PRBMDO 0163-1829 10.1103/PhysRevB.33.3263
-
(1986)
Phys. Rev. B
, vol.33
, pp. 3263
-
-
Fradkin, E.1
-
55
-
-
60949093838
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.79.045321
-
R. Shindou and S. Murakami, Phys. Rev. B 79, 045321 (2009). PRBMDO 1098-0121 10.1103/PhysRevB.79.045321
-
(2009)
Phys. Rev. B
, vol.79
, pp. 045321
-
-
Shindou, R.1
Murakami, S.2
-
56
-
-
80155137545
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.107.196803
-
P. Goswami and S. Chakravarty, Phys. Rev. Lett. 107, 196803 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.196803
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 196803
-
-
Goswami, P.1
Chakravarty, S.2
-
57
-
-
84863658963
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.86.045102
-
Z. Ringel, Y. E. Kraus, and A. Stern, Phys. Rev. B 86, 045102 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.86.045102
-
(2012)
Phys. Rev. B
, vol.86
, pp. 045102
-
-
Ringel, Z.1
Kraus, Y.E.2
Stern, A.3
-
59
-
-
84899743063
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.89.155315
-
H. Obuse, S. Ryu, A. Furusaki, and C. Mudry, Phys. Rev. B 89, 155315 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.89.155315
-
(2014)
Phys. Rev. B
, vol.89
, pp. 155315
-
-
Obuse, H.1
Ryu, S.2
Furusaki, A.3
Mudry, C.4
-
61
-
-
84867028832
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.86.115133
-
A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.86.115133
-
(2012)
Phys. Rev. B
, vol.86
, pp. 115133
-
-
Zyuzin, A.A.1
Burkov, A.A.2
-
62
-
-
84890573235
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.88.245107
-
P. Goswami and S. Tewari, Phys. Rev. B 88, 245107 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.88.245107
-
(2013)
Phys. Rev. B
, vol.88
, pp. 245107
-
-
Goswami, P.1
Tewari, S.2
|