메뉴 건너뛰기




Volumn 62, Issue 14, 2014, Pages 3499-3509

Collaborative kalman filtering for dynamic matrix factorization

Author keywords

Collaborative filtering; expectation maximization; Kalman filtering; learning; recommendation systems

Indexed keywords

ALGORITHMS; COLLABORATIVE FILTERING; RECOMMENDER SYSTEMS;

EID: 84903591959     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2014.2326618     Document Type: Article
Times cited : (67)

References (31)
  • 3
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniquesfor recommender systems
    • Aug.
    • Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniquesfor recommender systems, " IEEE Comput., vol. 42, no. 8, pp. 30-37, Aug. 2009.
    • (2009) IEEE Comput , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 4
    • 26944457949 scopus 로고    scopus 로고
    • Ph.D. dissertation, Mass. Inst. Technol., Cambridge, MA, USA
    • N. Srebro, "Learning with matrix factorizations, " Ph.D. dissertation, Mass. Inst. Technol., Cambridge, MA, USA, 2004.
    • (2004) Learning with Matrix Factorizations
    • Srebro, N.1
  • 9
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Mar.
    • R. E. Kalman, "A new approach to linear filtering and prediction problems, "J. Basic Eng.-T. ASME, vol. 82, no. 1, pp. 35-45, Mar. 1960.
    • (1960) J. Basic Eng.-T. ASME , vol.82 , Issue.1 , pp. 35-45
    • Kalman, R.E.1
  • 11
    • 21644483999 scopus 로고
    • Maximum likelihoodestimates of linear dynamic systems
    • Aug.
    • H. E. Rauch, F. Tung, and C. T. Striebel, "Maximum likelihoodestimates of linear dynamic systems, " AIAA J., vol. 3, no. 8, pp.1445-1450, Aug. 1965.
    • (1965) AIAA J , vol.3 , Issue.8 , pp. 1445-1450
    • Rauch, H.E.1    Tung, F.2    Striebel, C.T.3
  • 12
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Las Vegas, NV, USA, Aug
    • Y. Koren, "Factorization meets the neighborhood: A multifaceted collaborativefiltering model, " in Proc. ACM SIGKDD Int. Conf. Knowl.Disc. Data Min., Las Vegas, NV, USA, Aug. 2008, pp. 426-434.
    • (2008) Proc. ACM SIGKDD Int. Conf. Knowl.Disc. Data Min , pp. 426-434
    • Koren, Y.1
  • 13
    • 79955164643 scopus 로고    scopus 로고
    • Evaluating recommendation systems
    • F. Ricci L. Rokach, B. Shapira, and P. B. Kantor, Eds. New York, NY, USA: Springer
    • G. Shani and A. Gunawardana, "Evaluating recommendation systems, "in Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds. New York, NY, USA: Springer, 2011, pp.257-297.
    • (2011) Recommender Systems Handbook , pp. 257-297
    • Shani, G.1    Gunawardana, A.2
  • 14
    • 0015360234 scopus 로고
    • Optimal simultaneous state estimation and parameteridentification in linear discrete-time systems
    • Jun.
    • Y. Bar-Shalom, "Optimal simultaneous state estimation and parameteridentification in linear discrete-time systems, " IEEE Trans. Autom.Control, vol. AC-17, no. 3, pp. 308-319, Jun. 1972.
    • (1972) IEEE Trans. Autom. Control , vol.AC-17 , Issue.3 , pp. 308-319
    • Bar-Shalom, Y.1
  • 15
    • 77950364314 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Apr.
    • Y. Koren, "Collaborative filtering with temporal dynamics, " Commun.ACM, vol. 53, no. 4, pp. 89-97, Apr. 2010.
    • (2010) Commun. ACM , vol.53 , Issue.4 , pp. 89-97
    • Koren, Y.1
  • 16
    • 80052121737 scopus 로고    scopus 로고
    • Temporal collaborative filtering with Bayesian probabilistic tensorfactorization
    • Columbus, OH, Apr.-May
    • L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell, "Temporal collaborative filtering with Bayesian probabilistic tensorfactorization, " in Proc. SIAM Int. Conf. Data Min., Columbus, OH, Apr.-May 2010, pp. 211-222.
    • (2010) Proc. SIAM Int. Conf. Data Min , pp. 211-222
    • Xiong, L.1    Chen, X.2    Huang, T.-K.3    Schneider, J.4    Carbonell, J.G.5
  • 17
    • 72249115124 scopus 로고    scopus 로고
    • A spatio-temporal approach tocollaborative filtering
    • NewYork, NY, USA, Oct.
    • Z. Lu, D. Agarwal, and I. S. Dhillon, "A spatio-temporal approach tocollaborative filtering, " in Proc. ACM Conf. Recommender Syst., NewYork, NY, USA, Oct. 2009, pp. 13-20.
    • (2009) Proc. ACM Conf. Recommender Syst , pp. 13-20
    • Lu, Z.1    Agarwal, D.2    Dhillon, I.S.3
  • 20
    • 72449185214 scopus 로고    scopus 로고
    • Temporal collaborative filteringwith adaptive neighbourhoods
    • Boston, MA, USA, Jul.
    • N. Lathia, S. Hailes, and L. Capra, "Temporal collaborative filteringwith adaptive neighbourhoods, " in Proc. ACM SIGIR Conf. Res. Dev.Inf.Retrieval, Boston, MA, USA, Jul. 2009, pp. 796-797.
    • (2009) Proc. ACM SIGIR Conf. Res. Dev.Inf.Retrieval , pp. 796-797
    • Lathia, N.1    Hailes, S.2    Capra, L.3
  • 21
    • 80055050774 scopus 로고    scopus 로고
    • Tracking user-preferencevarying speed in collaborative filtering
    • San Francisco, CA, USA, Aug.
    • R. Li, B. Li, C. Jin, X. Xue, and X. Zhu, "Tracking user-preferencevarying speed in collaborative filtering, " in Proc. AAAI Conf. Artif.Intell., San Francisco, CA, USA, Aug. 2011, pp. 133-138.
    • (2011) Proc. AAAI Conf. Artif.Intell , pp. 133-138
    • Li, R.1    Li, B.2    Jin, C.3    Xue, X.4    Zhu, X.5
  • 22
    • 84866942678 scopus 로고    scopus 로고
    • Recommended for you
    • Oct.
    • J. A. Konstan and J. Riedl, "Recommended for you, " IEEE Spectrum, vol. 49, no. 10, pp. 54-61, Oct. 2012.
    • (2012) IEEE Spectrum , vol.49 , Issue.10 , pp. 54-61
    • Konstan, J.A.1    Riedl, J.2
  • 23
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorizationusing Markov chain Monte Carlo
    • Helsinki, Finland Jul.
    • R. Salakhutdinov and A. Mnih, "Bayesian probabilistic matrix factorizationusing Markov chain Monte Carlo, " in Proc. Int. Conf. Mach.Learn., Helsinki, Finland, Jul. 2008, pp. 880-887.
    • (2008) Proc. Int. Conf. Mach.Learn , pp. 880-887
    • Salakhutdinov, R.1    Mnih, A.2
  • 25
    • 84858702721 scopus 로고    scopus 로고
    • Recommender systems: From algorithmsto user experience
    • Apr.
    • J. A. Konstan and J. Riedl, "Recommender systems: From algorithmsto user experience, " User Model. User-Adap., vol. 22, no. 1-2, pp.101-123, Apr. 2012.
    • (2012) User Model. User-Adap , vol.22 , Issue.1-2 , pp. 101-123
    • Konstan, J.A.1    Riedl, J.2
  • 26
    • 84860871519 scopus 로고    scopus 로고
    • Using control theory for stable andefficient recommender systems
    • Lyon, France, Apr.
    • T. Jambor, J.Wang, and N. Lathia, "Using control theory for stable andefficient recommender systems, " in Proc. Int. World Wide Web Conf., Lyon, France, Apr. 2012, pp. 11-20.
    • (2012) Proc. Int. World Wide Web Conf , pp. 11-20
    • Jambor, T.1    Wang, J.2    Lathia, N.3
  • 28
    • 84897567456 scopus 로고    scopus 로고
    • Local low-rank matrixapproximation
    • Atlanta, GA, USA, Jun. 2013
    • J. Lee, S. Kim, G. Lebanon, and Y. Singer, "Local low-rank matrixapproximation, " in Proc. Int. Conf.Mach. Learn., Atlanta, GA, USA, Jun. 2013, vol. 2, pp. 82-90.
    • Proc. Int. Conf.Mach. Learn , vol.2 , pp. 82-90
    • Lee, J.1    Kim, S.2    Lebanon, G.3    Singer, Y.4
  • 29
    • 84903562091 scopus 로고    scopus 로고
    • Dynamic factormodeling via robust subspace tracking
    • presented at the Finance Risk Manag., Toronto, ON, Canada, Sep.
    • A. Y. Aravkin, K. R. Varshney, and D. M. Malioutov, "Dynamic factormodeling via robust subspace tracking, " presented at the Industr.-Acad.Workshop Optim. Finance Risk Manag., Toronto, ON, Canada, Sep.2013.
    • (2013) Industr.-Acad.Workshop Optim.
    • Aravkin, A.Y.1    Varshney, K.R.2    Malioutov, D.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.