메뉴 건너뛰기




Volumn , Issue , 2013, Pages 423-440

Polymer Scaffold Fabrication

Author keywords

3D printing; Bioprinting; CAD CAM; Inkjet; Laser induced forward transfer; Rapid prototyping; Scaffold processing

Indexed keywords

3D PRINTERS; COMPUTER AIDED DESIGN; FABRICATION; RAPID PROTOTYPING; TISSUE;

EID: 84903223596     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-0-12-398358-9.00022-7     Document Type: Chapter
Times cited : (16)

References (71)
  • 1
    • 34548182241 scopus 로고    scopus 로고
    • Tissue engineering with the aid of inkjet printers
    • Campbell P.G., Weiss L.E. Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther 2007, 7(8):1123-1127.
    • (2007) Expert Opin Biol Ther , vol.7 , Issue.8 , pp. 1123-1127
    • Campbell, P.G.1    Weiss, L.E.2
  • 6
    • 84855396802 scopus 로고    scopus 로고
    • Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
    • Fedorovich N.E., Schuurman W., Wijnberg H.M., Prins H.-J., van Weeren P.R., Malda J., et al. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C, Methods 2012, 18(1):33-44.
    • (2012) Tissue Eng Part C, Methods , vol.18 , Issue.1 , pp. 33-44
    • Fedorovich, N.E.1    Schuurman, W.2    Wijnberg, H.M.3    Prins, H.-J.4    van Weeren, P.R.5    Malda, J.6
  • 8
    • 84903241485 scopus 로고    scopus 로고
    • In vivo generation of functional tissues using the inkjet printing technology [abstract]
    • Xu T., Zhao W., Atala A., Yoo J. In vivo generation of functional tissues using the inkjet printing technology [abstract]. Tissue Eng 2007, 13(7):1713-1714.
    • (2007) Tissue Eng , vol.13 , Issue.7 , pp. 1713-1714
    • Xu, T.1    Zhao, W.2    Atala, A.3    Yoo, J.4
  • 9
    • 81455158865 scopus 로고    scopus 로고
    • Plga/hydrogel biopapers as a stackable substrate for printing huvec networks via biolp
    • Pirlo R.K., Wu P., Liu J., Ringeisen B. Plga/hydrogel biopapers as a stackable substrate for printing huvec networks via biolp. Biotechnol Bioeng 2012, 109(1):262-273.
    • (2012) Biotechnol Bioeng , vol.109 , Issue.1 , pp. 262-273
    • Pirlo, R.K.1    Wu, P.2    Liu, J.3    Ringeisen, B.4
  • 10
    • 79952108287 scopus 로고    scopus 로고
    • Additive manufacturing for in situ repair of osteochondral defects
    • Cohen D.L., Lipton J.I., Bonassar L.J., Lipson H. Additive manufacturing for in situ repair of osteochondral defects. Biofabrication 2010, 2(3):35004-35015.
    • (2010) Biofabrication , vol.2 , Issue.3 , pp. 35004-35015
    • Cohen, D.L.1    Lipton, J.I.2    Bonassar, L.J.3    Lipson, H.4
  • 11
    • 33745786636 scopus 로고    scopus 로고
    • Direct freeform fabrication of seeded hydrogels in arbitrary geometries
    • Cohen D.L., Malone E., Lipson H., Bonassar L.J. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng 2006, 12(5):1325-1335.
    • (2006) Tissue Eng , vol.12 , Issue.5 , pp. 1325-1335
    • Cohen, D.L.1    Malone, E.2    Lipson, H.3    Bonassar, L.J.4
  • 13
    • 45249104205 scopus 로고    scopus 로고
    • Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue eng Part B
    • Nicodemus G.D., Bryant S.J. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue eng Part B. Reviews 2008, 14(2):149-165.
    • (2008) Reviews , vol.14 , Issue.2 , pp. 149-165
    • Nicodemus, G.D.1    Bryant, S.J.2
  • 15
    • 77951216665 scopus 로고    scopus 로고
    • Laser-assisted cell printing: Principle, physical parameters versus cell fate and perspectives in tissue engineering
    • Guillemot F., Souquet A., Catros S., Guillotin B. Laser-assisted cell printing: Principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (London, England) 2010, 5(3):507-515.
    • (2010) Nanomedicine (London, England) , vol.5 , Issue.3 , pp. 507-515
    • Guillemot, F.1    Souquet, A.2    Catros, S.3    Guillotin, B.4
  • 16
    • 4344699758 scopus 로고    scopus 로고
    • Crosslinking density influences the morphology of chondrocytes photoencapsulated in peg hydrogels during the application of compressive strain
    • Bryant S.J., Anseth K.S., Lee D.A., Bader D.L. Crosslinking density influences the morphology of chondrocytes photoencapsulated in peg hydrogels during the application of compressive strain. J Orth Res 2004, 22(5):1143-1149.
    • (2004) J Orth Res , vol.22 , Issue.5 , pp. 1143-1149
    • Bryant, S.J.1    Anseth, K.S.2    Lee, D.A.3    Bader, D.L.4
  • 17
    • 33751182499 scopus 로고    scopus 로고
    • Application of inkjet printing to tissue engineering
    • Boland T., Xu T., Damon B., Cui X. Application of inkjet printing to tissue engineering. Biotechnol J 2006, 1(9):910-917.
    • (2006) Biotechnol J , vol.1 , Issue.9 , pp. 910-917
    • Boland, T.1    Xu, T.2    Damon, B.3    Cui, X.4
  • 18
    • 0036345612 scopus 로고    scopus 로고
    • Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate)
    • Payne R.G., McGonigle J.S., Yaszemski M.J., Yasko A.W., Mikos A.G. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 2002, 23(22):4373-4380.
    • (2002) Biomaterials , vol.23 , Issue.22 , pp. 4373-4380
    • Payne, R.G.1    McGonigle, J.S.2    Yaszemski, M.J.3    Yasko, A.W.4    Mikos, A.G.5
  • 19
    • 0036342204 scopus 로고    scopus 로고
    • Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles
    • Payne R.G., Yaszemski M.J., Yasko A.W., Mikos A.G. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles. Biomaterials 2002, 23(22):4359-4371.
    • (2002) Biomaterials , vol.23 , Issue.22 , pp. 4359-4371
    • Payne, R.G.1    Yaszemski, M.J.2    Yasko, A.W.3    Mikos, A.G.4
  • 20
    • 78649614983 scopus 로고    scopus 로고
    • The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system
    • Buyukhatipoglu K., Jo W., Sun W., Clyne A.M. The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system. Biofabrication 2009, 1(3):35003-35011.
    • (2009) Biofabrication , vol.1 , Issue.3 , pp. 35003-35011
    • Buyukhatipoglu, K.1    Jo, W.2    Sun, W.3    Clyne, A.M.4
  • 21
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
    • Hutmacher D.W., Sittinger M., Risbud M.V. Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 2004, 22(7):354-362.
    • (2004) Trends Biotechnol , vol.22 , Issue.7 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 22
    • 82055185842 scopus 로고    scopus 로고
    • Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite
    • Catros S., Fricain J.-C., Guillotin B., Pippenger B., Bareille R., Remy M., et al. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 2011, 3(2):25001-25011.
    • (2011) Biofabrication , vol.3 , Issue.2 , pp. 25001-25011
    • Catros, S.1    Fricain, J.-C.2    Guillotin, B.3    Pippenger, B.4    Bareille, R.5    Remy, M.6
  • 23
    • 80053297640 scopus 로고    scopus 로고
    • Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions
    • Gruene M., Pflaum M., Hess C., Diamantouros S., Schlie S., Deiwick A., et al. Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng Part C: Methods 2011, 17(10):973-982.
    • (2011) Tissue Eng Part C: Methods , vol.17 , Issue.10 , pp. 973-982
    • Gruene, M.1    Pflaum, M.2    Hess, C.3    Diamantouros, S.4    Schlie, S.5    Deiwick, A.6
  • 24
    • 84900268933 scopus 로고    scopus 로고
    • Chapter 13: 3d-fiber deposition for tissue engineering and organ printing applications
    • Springer, Netherlands, B.R. Ringeisen, B.J. Spargo, P.K. Wu (Eds.)
    • Fedorovich N.E., Moroni L., Malda J., Alblas J., Blitterswijk C.A., Dhert W.J.A. Chapter 13: 3d-fiber deposition for tissue engineering and organ printing applications. Cell and organ printing part 6 2010, 225-239. Springer, Netherlands. B.R. Ringeisen, B.J. Spargo, P.K. Wu (Eds.).
    • (2010) Cell and organ printing part 6 , pp. 225-239
    • Fedorovich, N.E.1    Moroni, L.2    Malda, J.3    Alblas, J.4    Blitterswijk, C.A.5    Dhert, W.J.A.6
  • 26
    • 84863039344 scopus 로고    scopus 로고
    • Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration
    • Ahn S., Lee H., Kim G. Polycaprolactone scaffolds fabricated with an advanced electrohydrodynamic direct-printing method for bone tissue regeneration. Biomacromolecules 2011, 12(12):4256-4263.
    • (2011) Biomacromolecules , vol.12 , Issue.12 , pp. 4256-4263
    • Ahn, S.1    Lee, H.2    Kim, G.3
  • 27
    • 70350035472 scopus 로고    scopus 로고
    • Endocultivation: 3d printed customized porous scaffolds for heterotopic bone induction
    • Becker S.T., Bolte H., Krapf O., Seitz H., Douglas T., Sivananthan S., et al. Endocultivation: 3d printed customized porous scaffolds for heterotopic bone induction. Oral Oncol 2009, 45(11):e181-e188.
    • (2009) Oral Oncol , vol.45 , Issue.11
    • Becker, S.T.1    Bolte, H.2    Krapf, O.3    Seitz, H.4    Douglas, T.5    Sivananthan, S.6
  • 28
    • 15944374297 scopus 로고    scopus 로고
    • Scaffold fabrication by indirect three-dimensional printing
    • Lee M., Dunn J.C.Y., Wu B.M. Scaffold fabrication by indirect three-dimensional printing. Biomaterials 2005, 26(20):4281-4289.
    • (2005) Biomaterials , vol.26 , Issue.20 , pp. 4281-4289
    • Lee, M.1    Dunn, J.C.Y.2    Wu, B.M.3
  • 29
    • 0037205335 scopus 로고    scopus 로고
    • Scaffold development using 3d printing with a starch-based polymer
    • Lam C.X.F., Mo X.M., Teoh S.H., Hutmacher D.W. Scaffold development using 3d printing with a starch-based polymer. Mater Sci Eng: C 2002, 20(1-2):49-56.
    • (2002) Mater Sci Eng: C , vol.20 , Issue.1-2 , pp. 49-56
    • Lam, C.X.F.1    Mo, X.M.2    Teoh, S.H.3    Hutmacher, D.W.4
  • 30
    • 0034773430 scopus 로고    scopus 로고
    • Inkjet printing for materials and devices
    • Calvert P. Inkjet printing for materials and devices. Chem Mater 2001, 13(10):3299-3305.
    • (2001) Chem Mater , vol.13 , Issue.10 , pp. 3299-3305
    • Calvert, P.1
  • 31
    • 78751682352 scopus 로고    scopus 로고
    • Elucidating the role of matrix stiffness in 3D cell migration and remodeling
    • Ehrbar M., Sala A., Lienemann P., Ranga A., Mosiewicz K., Bittermann A., et al. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys J 2011, 100(2):284-293.
    • (2011) Biophys J , vol.100 , Issue.2 , pp. 284-293
    • Ehrbar, M.1    Sala, A.2    Lienemann, P.3    Ranga, A.4    Mosiewicz, K.5    Bittermann, A.6
  • 32
    • 77953651709 scopus 로고    scopus 로고
    • Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
    • Skardal A., Zhang J., Prestwich G.D. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 2010, 31(24):6173-6181.
    • (2010) Biomaterials , vol.31 , Issue.24 , pp. 6173-6181
    • Skardal, A.1    Zhang, J.2    Prestwich, G.D.3
  • 33
    • 0032737267 scopus 로고    scopus 로고
    • Polymeric biomaterials with degradation sites for proteases involved in cell migration
    • West J.L., Hubbell J.A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 1999, 32(1):241-244.
    • (1999) Macromolecules , vol.32 , Issue.1 , pp. 241-244
    • West, J.L.1    Hubbell, J.A.2
  • 34
    • 79953891357 scopus 로고    scopus 로고
    • Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications
    • Seyednejad H., Gawlitta D., Dhert W.J.A., van Nostrum C.F., Vermonden T., Hennink W.E. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomater 2011, 7(5):1999-2006.
    • (2011) Acta Biomater , vol.7 , Issue.5 , pp. 1999-2006
    • Seyednejad, H.1    Gawlitta, D.2    Dhert, W.J.A.3    van Nostrum, C.F.4    Vermonden, T.5    Hennink, W.E.6
  • 35
    • 38349076688 scopus 로고    scopus 로고
    • Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations
    • Phillippi J.A., Miller E., Weiss L., Huard J., Waggoner A., Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 2008, 26(1):127-134.
    • (2008) Stem Cells , vol.26 , Issue.1 , pp. 127-134
    • Phillippi, J.A.1    Miller, E.2    Weiss, L.3    Huard, J.4    Waggoner, A.5    Campbell, P.6
  • 36
    • 2442426201 scopus 로고    scopus 로고
    • The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis
    • Sung H.-J., Meredith C., Johnson C., Galis Z.S. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 2004, 25(26):5735-5742.
    • (2004) Biomaterials , vol.25 , Issue.26 , pp. 5735-5742
    • Sung, H.-J.1    Meredith, C.2    Johnson, C.3    Galis, Z.S.4
  • 37
    • 0036451417 scopus 로고    scopus 로고
    • Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels
    • Mauck R.L., Seyhan S.L., Ateshian G.A., Hung C.T. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 2002, 30(8):1046-1056.
    • (2002) Ann Biomed Eng , vol.30 , Issue.8 , pp. 1046-1056
    • Mauck, R.L.1    Seyhan, S.L.2    Ateshian, G.A.3    Hung, C.T.4
  • 38
    • 67651065002 scopus 로고    scopus 로고
    • Combinatorial approaches to controlling cell behavior and tissue formation in 3D via rapid-prototyping and smart scaffold design
    • Woodfield T.B.F., Moroni L., Malda J. Combinatorial approaches to controlling cell behavior and tissue formation in 3D via rapid-prototyping and smart scaffold design. Combinatorial Chem High Throughput Screening 2009, 12(6):562-579.
    • (2009) Combinatorial Chem High Throughput Screening , vol.12 , Issue.6 , pp. 562-579
    • Woodfield, T.B.F.1    Moroni, L.2    Malda, J.3
  • 40
  • 41
    • 84858862640 scopus 로고    scopus 로고
    • In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(e{open}-caprolactone)
    • Seyednejad H., Gawlitta D., Kuiper R.V., de Bruin A., van Nostrum C.F., Vermonden T., et al. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(e{open}-caprolactone). Biomaterials 2012, 33(17):4309-4318.
    • (2012) Biomaterials , vol.33 , Issue.17 , pp. 4309-4318
    • Seyednejad, H.1    Gawlitta, D.2    Kuiper, R.V.3    de Bruin, A.4    van Nostrum, C.F.5    Vermonden, T.6
  • 42
    • 47049095937 scopus 로고    scopus 로고
    • Characterization of cell constructs generated with inkjet printing technology using in vivo magnetic resonance imaging
    • Xu T., Olson J., Zhao W., Atala A., Zhu J.-M., Yoo J.J. Characterization of cell constructs generated with inkjet printing technology using in vivo magnetic resonance imaging. J Manufacturing Sci Eng 2008, 130(2):021013.
    • (2008) J Manufacturing Sci Eng , vol.130 , Issue.2 , pp. 021013
    • Xu, T.1    Olson, J.2    Zhao, W.3    Atala, A.4    Zhu, J.-M.5    Yoo, J.J.6
  • 43
    • 79251627040 scopus 로고    scopus 로고
    • Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds
    • Kim K., Dean D., Lu A., Mikos A.G., Fisher J.P. Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater 2011, 7(3):1249-1264.
    • (2011) Acta Biomater , vol.7 , Issue.3 , pp. 1249-1264
    • Kim, K.1    Dean, D.2    Lu, A.3    Mikos, A.G.4    Fisher, J.P.5
  • 45
    • 77951245659 scopus 로고    scopus 로고
    • In vivo bioprinting for computer- and robotic-assisted medical intervention: Preliminary study in mice
    • Keriquel V., Guillemot F., Arnault I., Guillotin B., Miraux S., Amédée J., et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: Preliminary study in mice. Biofabrication 2010, 2(1):14101-14108.
    • (2010) Biofabrication , vol.2 , Issue.1 , pp. 14101-14108
    • Keriquel, V.1    Guillemot, F.2    Arnault, I.3    Guillotin, B.4    Miraux, S.5    Amédée, J.6
  • 46
    • 77954963049 scopus 로고    scopus 로고
    • Geometric feedback control of discrete-deposition sff systems
    • Cohen D.L., Lipson H. Geometric feedback control of discrete-deposition sff systems. Rapid Prototyping Journal 2010, 16(5):377-393.
    • (2010) Rapid Prototyping Journal , vol.16 , Issue.5 , pp. 377-393
    • Cohen, D.L.1    Lipson, H.2
  • 47
    • 0036685718 scopus 로고    scopus 로고
    • Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques
    • Landers R., Pfister A., Hübner U., John H., Schmelzeisen R., Mülhaupt R. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 2002, 37(15):3107-3116.
    • (2002) J Mater Sci , vol.37 , Issue.15 , pp. 3107-3116
    • Landers, R.1    Pfister, A.2    Hübner, U.3    John, H.4    Schmelzeisen, R.5    Mülhaupt, R.6
  • 48
    • 69649100202 scopus 로고    scopus 로고
    • Human microvasculature fabrication using thermal inkjet printing technology
    • Cui X., Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009, 30(31):6221-6227.
    • (2009) Biomaterials , vol.30 , Issue.31 , pp. 6221-6227
    • Cui, X.1    Boland, T.2
  • 49
    • 34547399078 scopus 로고    scopus 로고
    • Fab@home: The personal desktop fabricator kit
    • Malone E., Lipson H. Fab@home: The personal desktop fabricator kit. Rapid Prototyping Journal 2007, 13(4):245-255.
    • (2007) Rapid Prototyping Journal , vol.13 , Issue.4 , pp. 245-255
    • Malone, E.1    Lipson, H.2
  • 51
    • 78650294024 scopus 로고    scopus 로고
    • Bioprinting by laser-induced forward transfer for tissue engineering applications: Jet formation modeling
    • Mézel C., Souquet A., Hallo L., Guillemot F. Bioprinting by laser-induced forward transfer for tissue engineering applications: Jet formation modeling. Biofabrication 2010, 2(1):14103-14109.
    • (2010) Biofabrication , vol.2 , Issue.1 , pp. 14103-14109
    • Mézel, C.1    Souquet, A.2    Hallo, L.3    Guillemot, F.4
  • 52
    • 79952230133 scopus 로고    scopus 로고
    • Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting
    • Gruene M., Unger C., Koch L., Deiwick A., Chichkov B. Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting. Biomed Eng OnLine 2011, 10(1):19.
    • (2011) Biomed Eng OnLine , vol.10 , Issue.1 , pp. 19
    • Gruene, M.1    Unger, C.2    Koch, L.3    Deiwick, A.4    Chichkov, B.5
  • 53
    • 77955276061 scopus 로고    scopus 로고
    • High-throughput laser printing of cells and biomaterials for tissue engineering
    • Guillemot F., Souquet A., Catros S., Guillotin B., Lopez J., Faucon M., et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 2010, 6(7):2494-2500.
    • (2010) Acta Biomater , vol.6 , Issue.7 , pp. 2494-2500
    • Guillemot, F.1    Souquet, A.2    Catros, S.3    Guillotin, B.4    Lopez, J.5    Faucon, M.6
  • 54
    • 84900292821 scopus 로고    scopus 로고
    • Chapter 6: High-throughput biological laser printing: Droplet ejection mechanism, integration of a dedicated workstation, and bioprinting of cells and biomaterials
    • Springer, Netherlands, B.R. Ringeisen, B.J. Spargo, P.K. Wu (Eds.)
    • Guillemot F., Guillotin B., Catros S., Souquet A., Mezel C., Keriquel V., et al. Chapter 6: High-throughput biological laser printing: Droplet ejection mechanism, integration of a dedicated workstation, and bioprinting of cells and biomaterials. Cell and organ printing part 3 2010, 95-113. Springer, Netherlands. B.R. Ringeisen, B.J. Spargo, P.K. Wu (Eds.).
    • (2010) Cell and organ printing part 3 , pp. 95-113
    • Guillemot, F.1    Guillotin, B.2    Catros, S.3    Souquet, A.4    Mezel, C.5    Keriquel, V.6
  • 57
    • 77954990589 scopus 로고    scopus 로고
    • An optical method for evaluation of geometric fidelity for anatomically shaped tissue-engineered constructs
    • Ballyns J.J., Cohen D.L., Malone E., Maher S.A., Potter H.G., Wright T., et al. An optical method for evaluation of geometric fidelity for anatomically shaped tissue-engineered constructs. Tissue Eng Part C, Methods 2010, 16(4):693-703.
    • (2010) Tissue Eng Part C, Methods , vol.16 , Issue.4 , pp. 693-703
    • Ballyns, J.J.1    Cohen, D.L.2    Malone, E.3    Maher, S.A.4    Potter, H.G.5    Wright, T.6
  • 58
    • 84869456797 scopus 로고    scopus 로고
    • Generation of organized bladder tissue constructs using a novel hybrid printing system [abstract]
    • Fuellhase C., Soler R., Andersson K.E., Atala A., Yoo J.J. Generation of organized bladder tissue constructs using a novel hybrid printing system [abstract]. Eur Urol Suppl 2009, 8(4):186.
    • (2009) Eur Urol Suppl , vol.8 , Issue.4 , pp. 186
    • Fuellhase, C.1    Soler, R.2    Andersson, K.E.3    Atala, A.4    Yoo, J.J.5
  • 59
    • 82055190187 scopus 로고    scopus 로고
    • Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology
    • Shim J.-H., Kim J.Y., Park M., Park J., Cho D- W. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 2011, 3(3):34102-34110.
    • (2011) Biofabrication , vol.3 , Issue.3 , pp. 34102-34110
    • Shim, J.-H.1    Kim, J.Y.2    Park, M.3    Park, J.4    Cho, D.-W.5
  • 60
    • 33644880790 scopus 로고    scopus 로고
    • Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system
    • Wang X., Yan Y., Pan Y., Xiong Z., Liu H., Cheng J., et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 2006, 12(1):83-90.
    • (2006) Tissue Eng , vol.12 , Issue.1 , pp. 83-90
    • Wang, X.1    Yan, Y.2    Pan, Y.3    Xiong, Z.4    Liu, H.5    Cheng, J.6
  • 61
    • 84903254936 scopus 로고    scopus 로고
    • editors. An inkjet printing station for neuroregenerative tissue engineering. 2007/11//: IEEE.
    • Silva DS, Wallace DB, Cooley PW, Radulescu D, Hayes DJ, editors. An inkjet printing station for neuroregenerative tissue engineering. 2007/11//: IEEE.
    • Silva, D.S.1    Wallace, D.B.2    Cooley, P.W.3    Radulescu, D.4    Hayes, D.J.5
  • 62
    • 34248562050 scopus 로고    scopus 로고
    • Development of a new calcium phosphate powder-binder system for the 3d printing of patient specific implants
    • Khalyfa A., Vogt S., Weisser J., Grimm G., Rechtenbach A., Meyer W., et al. Development of a new calcium phosphate powder-binder system for the 3d printing of patient specific implants. J Mater Sci Mater Med 2007, 18(5):909-916.
    • (2007) J Mater Sci Mater Med , vol.18 , Issue.5 , pp. 909-916
    • Khalyfa, A.1    Vogt, S.2    Weisser, J.3    Grimm, G.4    Rechtenbach, A.5    Meyer, W.6
  • 63
    • 77954383117 scopus 로고    scopus 로고
    • Examination of cell-host-biomaterial interactions via high-throughput technologies: A re-appraisal
    • Power K.A., Fitzgerald K.T., Gallagher W.M. Examination of cell-host-biomaterial interactions via high-throughput technologies: A re-appraisal. Biomaterials 2010, 31(26):6667-6674.
    • (2010) Biomaterials , vol.31 , Issue.26 , pp. 6667-6674
    • Power, K.A.1    Fitzgerald, K.T.2    Gallagher, W.M.3
  • 65
    • 84885157269 scopus 로고    scopus 로고
    • Chapter 22: Polymer scaffold fabrication
    • Academic Press, Burlington, MA, R. Lanza, R. Langer, J. Vacanti (Eds.), 3rd ed.
    • Murphy M.B., Mikos A.G. Chapter 22: Polymer scaffold fabrication. Principles of tissue engineering 2007, 309-319. Academic Press, Burlington, MA. 3rd ed. R. Lanza, R. Langer, J. Vacanti (Eds.).
    • (2007) Principles of tissue engineering , pp. 309-319
    • Murphy, M.B.1    Mikos, A.G.2
  • 66
    • 84903230156 scopus 로고    scopus 로고
    • Table 22.1: Summary of scaffold fabrication techniques. Chapter 22: Polymer scaffold fabrication
    • Academic Press, Burlington, MA, R. Lanza, R. Langer, J. Vacanti (Eds.), 3rd ed.
    • Murphy M.B., Mikos A.G. Table 22.1: Summary of scaffold fabrication techniques. Chapter 22: Polymer scaffold fabrication. Principles of tissue engineering 2007, 318-319. Academic Press, Burlington, MA. 3rd ed. R. Lanza, R. Langer, J. Vacanti (Eds.).
    • (2007) Principles of tissue engineering , pp. 318-319
    • Murphy, M.B.1    Mikos, A.G.2
  • 67
    • 34548086740 scopus 로고    scopus 로고
    • Hydrogels as extracellular matrices for skeletal tissue engineering: State-of-the-art and novel application in organ printing
    • Fedorovich N.E., Alblas J., de Wijn J.R., Hennink W.E., Verbout A.J., Dhert W.J.A. Hydrogels as extracellular matrices for skeletal tissue engineering: State-of-the-art and novel application in organ printing. Tissue Eng 2007, 13(8):1905-1925.
    • (2007) Tissue Eng , vol.13 , Issue.8 , pp. 1905-1925
    • Fedorovich, N.E.1    Alblas, J.2    de Wijn, J.R.3    Hennink, W.E.4    Verbout, A.J.5    Dhert, W.J.A.6
  • 68
    • 83555177196 scopus 로고    scopus 로고
    • Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells
    • Gaetani R., Doevendans P.A., Metz C.H.G., Alblas J., Messina E., Giacomello A., et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 2012, 33(6):1782-1790.
    • (2012) Biomaterials , vol.33 , Issue.6 , pp. 1782-1790
    • Gaetani, R.1    Doevendans, P.A.2    Metz, C.H.G.3    Alblas, J.4    Messina, E.5    Giacomello, A.6
  • 70
    • 35649019249 scopus 로고    scopus 로고
    • Rapid prototyping as a tool for manufacturing bioartificial livers
    • Wang X., Yan Y., Zhang R. Rapid prototyping as a tool for manufacturing bioartificial livers. Trends Biotechnol 2007, 25(11):505-513.
    • (2007) Trends Biotechnol , vol.25 , Issue.11 , pp. 505-513
    • Wang, X.1    Yan, Y.2    Zhang, R.3
  • 71
    • 67649669884 scopus 로고    scopus 로고
    • Three-dimensional bioprinting of rat embryonic neural cells
    • Lee W., Pinckney J., Lee V., Lee J.-H., Fischer K., Polio S., et al. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport 2009, 20(8):798-803.
    • (2009) Neuroreport , vol.20 , Issue.8 , pp. 798-803
    • Lee, W.1    Pinckney, J.2    Lee, V.3    Lee, J.-H.4    Fischer, K.5    Polio, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.