-
1
-
-
20444501009
-
Unified segmentation
-
doi: 10.1016/j.neuroimage.2005.02.018
-
Ashburner, J., and Friston, K. J. (2005). Unified segmentation. Neuroimage 26, 839-851. doi: 10.1016/j.neuroimage.2005.02.018
-
(2005)
Neuroimage
, vol.26
, pp. 839-851
-
-
Ashburner, J.1
Friston, K.J.2
-
2
-
-
77957931288
-
Publish your computer code: It is good enough
-
doi: 10.1038/467753a
-
Barnes, N. (2010). Publish your computer code: it is good enough. Nat. News 467, 753-753. doi: 10.1038/467753a
-
(2010)
Nat. News
, vol.467
, pp. 753
-
-
Barnes, N.1
-
3
-
-
0030175198
-
AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
-
doi: 10.1006/cbmr.1996.0014
-
Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162-173. doi: 10.1006/cbmr.1996.0014
-
(1996)
Comput. Biomed. Res
, vol.29
, pp. 162-173
-
-
Cox, R.W.1
-
4
-
-
84864222718
-
Automated capture of experiment context for easier reproducibility in computational research
-
doi: 10.1109/MCSE.2012.41
-
Davison, A. (2012). Automated capture of experiment context for easier reproducibility in computational research. Comput. Sci. Eng. 14, 48-56. doi: 10.1109/MCSE.2012.41
-
(2012)
Comput. Sci. Eng
, vol.14
, pp. 48-56
-
-
Davison, A.1
-
5
-
-
84994026358
-
Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in Python
-
doi: 10.3389/fninf.2011.00013
-
Gorgolewski, K., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., and Ghosh, S. S. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5:13. doi: 10.3389/fninf.2011.00013
-
(2011)
Front. Neuroinform
, vol.5
, pp. 13
-
-
Gorgolewski, K.1
Madison, C.2
Clark, D.3
Halchenko, Y.O.4
Waskom, M.L.5
Ghosh, S.S.6
-
6
-
-
84863918721
-
Open is not enough. Let's take the next step: An integrated, community-driven computing platform for neuroscience
-
doi: 10.3389/fninf.2012.00022
-
Halchenko, Y. O., and Hanke, M. (2012). Open is not enough. Let's take the next step: an integrated, community-driven computing platform for neuroscience. Front. Neuroinform. 6:22. doi: 10.3389/fninf.2012.00022
-
(2012)
Front. Neuroinform
, vol.6
, pp. 22
-
-
Halchenko, Y.O.1
Hanke, M.2
-
7
-
-
64049085419
-
PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data
-
doi: 10.1007/s12021-008-9041-y
-
Hanke, M., Halchenko, Y., Sederberg, P., Hanson, S., Haxby, J., and Pollmann, S. (2009). PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics 7, 37-53. doi: 10.1007/s12021-008-9041-y
-
(2009)
Neuroinformatics
, vol.7
, pp. 37-53
-
-
Hanke, M.1
Halchenko, Y.2
Sederberg, P.3
Hanson, S.4
Haxby, J.5
Pollmann, S.6
-
8
-
-
84857392540
-
The case for open computer programs
-
doi: 10.1038/nature10836
-
Ince, D. C., Hatton, L., and Graham-Cumming, J. (2012). The case for open computer programs. Nature 482, 485-488. doi: 10.1038/nature10836
-
(2012)
Nature
, vol.482
, pp. 485-488
-
-
Ince, D.C.1
Hatton, L.2
Graham-Cumming, J.3
-
9
-
-
84877785791
-
Troubling trends in scientific software use
-
doi: 10.1126/science.1231535
-
Joppa, L. N., McInerny, G., Harper, R., Salido, L., Takeda, K., O'Hara, K., et al. (2013). Troubling trends in scientific software use. Science 340, 814-815. doi: 10.1126/science.1231535
-
(2013)
Science
, vol.340
, pp. 814-815
-
-
Joppa, L.N.1
McInerny, G.2
Harper, R.3
Salido, L.4
Takeda, K.5
O'Hara, K.6
-
10
-
-
70849135366
-
Beanplot: A boxplot alternative for visual comparison of distributions
-
Available online at
-
Kampstra, P. (2008). Beanplot: a boxplot alternative for visual comparison of distributions. J. Stat. Softw. 28, 1-9. Available online at: http://www.jstatsoft.org/v28/c01
-
(2008)
J. Stat. Softw
, vol.28
, pp. 1-9
-
-
Kampstra, P.1
-
11
-
-
84940343752
-
-
Available online at
-
Kubilius, J. (2013). The Open Science Cycle. Available online at: http://figshare.com/articles/The_Open_Science_Cycle_July_2013/751548
-
(2013)
The Open Science Cycle
-
-
Kubilius, J.1
-
12
-
-
80053550194
-
Emergence of perceptual gestalts in the human visual cortex: The case of the configural-superiority effect
-
doi: 10.1177/0956797611417000
-
Kubilius, J., Wagemans, J., and Op de Beeck, H. P. (2011). Emergence of perceptual gestalts in the human visual cortex: the case of the configural-superiority effect. Psychol. Sci. 22, 1296-1303. doi: 10.1177/0956797611417000
-
(2011)
Psychol. Sci
, vol.22
, pp. 1296-1303
-
-
Kubilius, J.1
Wagemans, J.2
Op de Beeck, H.P.3
-
13
-
-
0027558293
-
Distortion invariant object recognition in the dynamic link architecture
-
doi: 10.1109/12.2 10173
-
Lades, M., Vorbruggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R. P., et al. (1993). Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42, 300-311. doi: 10.1109/12.2 10173
-
(1993)
IEEE Trans. Comput
, vol.42
, pp. 300-311
-
-
Lades, M.1
Vorbruggen, J.C.2
Buhmann, J.3
Lange, J.4
von der Malsburg, C.5
Wurtz, R.P.6
-
14
-
-
0035195699
-
Inferotemporal neurons represent low-dimensional configurations of parameterized shapes
-
doi: 10.1038/nn767
-
Op de Beeck, H., Wagemans, J., andVogels, R. (2001). Inferotemporal neurons represent low-dimensional configurations of parameterized shapes. Nat. Neurosci. 4, 1244-1252. doi: 10.1038/nn767
-
(2001)
Nat. Neurosci
, vol.4
, pp. 1244-1252
-
-
Op de Beeck, H.1
Wagemans, J.2
Andvogels, R.3
-
15
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Available online at
-
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830. Available online at: http://jmlr.org/papers/v12/pedregosa11a.html
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
-
16
-
-
34047167343
-
PsychoPy-Psychophysics software in Python
-
doi: 10.1016/j.jneumeth.2006.11.017
-
Peirce, J. W. (2007). PsychoPy-Psychophysics software in Python. J. Neurosci. Methods 162, 8-13. doi: 10.1016/j.jneumeth.2006.11.017
-
(2007)
J. Neurosci. Methods
, vol.162
, pp. 8-13
-
-
Peirce, J.W.1
-
17
-
-
78449265811
-
Generating stimuli for neuroscience using PsychoPy
-
doi: 10.3389/neuro.11.010.2008
-
Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2:10. doi: 10.3389/neuro.11.010.2008
-
(2009)
Front. Neuroinform
, vol.2
, pp. 10
-
-
Peirce, J.W.1
-
18
-
-
34247481878
-
IPython: A system for interactive scientific computing
-
doi: 10.1109/MCSE.2007.53
-
Perez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21-29. doi: 10.1109/MCSE.2007.53
-
(2007)
Comput. Sci. Eng
, vol.9
, pp. 21-29
-
-
Perez, F.1
Granger, B.E.2
-
19
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
doi: 10.1038/14819
-
Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019-1025. doi: 10.1038/14819
-
(1999)
Nat. Neurosci
, vol.2
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
20
-
-
84892575451
-
An automated and reproducible workflow for running and analyzing neural simulations using Lancet and IPython Notebook
-
doi: 10.3389/fninf.2013. 00044
-
Stevens, J. R., Elver, M., and Bednar, J. A. (2013). An automated and reproducible workflow for running and analyzing neural simulations using Lancet and IPython Notebook. Front. Neuroinform. 7:44. doi: 10.3389/fninf.2013. 00044
-
(2013)
Front. Neuroinform
, vol.7
, pp. 44
-
-
Stevens, J.R.1
Elver, M.2
Bednar, J.A.3
-
21
-
-
84891880386
-
Characterisation of field loss based on microperimetry is predictive of face recognition difficulties
-
doi: 10.1167/ iovs.13-12420
-
Wallis, T. S., Taylor, C. P., Wallis, J., Jackson, M. L., and Bex, P. J. (2014). Characterisation of field loss based on microperimetry is predictive of face recognition difficulties. Invest. Ophthalmol. Vis. Sci. 55, 142-153. doi: 10.1167/ iovs.13-12420
-
(2014)
Invest. Ophthalmol. Vis. Sci
, vol.55
, pp. 142-153
-
-
Wallis, T.S.1
Taylor, C.P.2
Wallis, J.3
Jackson, M.L.4
Bex, P.J.5
-
22
-
-
84926456093
-
Nine simple ways to make it easier to (re) use your data
-
doi: 10.7287/peerj.preprints.7v2
-
White, E. P., Baldridge, E., Brym, Z. T., Locey, K. J., McGlinn, D. J., and Supp, S. R. (2013). Nine simple ways to make it easier to (re) use your data. Peer J PrePrints 1:e7v2. doi: 10.7287/peerj.preprints.7v2
-
(2013)
Peer J PrePrints
, vol.1
-
-
White, E.P.1
Baldridge, E.2
Brym, Z.T.3
Locey, K.J.4
McGlinn, D.J.5
Supp, S.R.6
-
23
-
-
84872238374
-
-
arXiv e-print No. 1210.0530, Available online at
-
Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., et al. (2012). Best Practices for Scientific Computing (arXiv e-print No. 1210.0530). Available online at: http://arxiv.org/abs/1210.0530
-
(2012)
Best Practices For Scientific Computing
-
-
Wilson, G.1
Aruliah, D.A.2
Brown, C.T.3
Hong, N.P.C.4
Davis, M.5
Guy, R.T.6
-
24
-
-
70449529877
-
Adaptation in the fusiform face area (FFA): Image or person?
-
doi: 10.1016/j.visres.2009.08.021
-
Xu, X., Yue, X., Lescroart, M. D., Biederman, I., and Kim, J. G. (2009). Adaptation in the fusiform face area (FFA): image or person? Vision Res. 49, 2800-2807. doi: 10.1016/j.visres.2009.08.021
-
(2009)
Vision Res
, vol.49
, pp. 2800-2807
-
-
Xu, X.1
Yue, X.2
Lescroart, M.D.3
Biederman, I.4
Kim, J.G.5
|