메뉴 건너뛰기




Volumn 7, Issue DEC, 2013, Pages

An automated and reproducible workflow for running and analyzing neural simulations using Lancet and IPython Notebook

Author keywords

Batch computation; Big data; IPython; Pandas; Provenance; Reproducibility; Simulation; Workflow

Indexed keywords


EID: 84892575451     PISSN: 16625196     EISSN: None     Source Type: Journal    
DOI: 10.3389/fninf.2013.00044     Document Type: Article
Times cited : (24)

References (14)
  • 1
    • 84892575328 scopus 로고    scopus 로고
    • Integrated workflows for spiking neu-ronal network simulations
    • doi: 10.3389/fninf.2013. 00034
    • Antolík, J., and Davison, A. P. (2013). Integrated workflows for spiking neu-ronal network simulations. Front. Neuroinform. 7:34. doi: 10.3389/fninf.2013. 00034
    • (2013) Front. Neuroinform , vol.7 , pp. 34
    • Antolík, J.1    Davison, A.P.2
  • 2
    • 82955174104 scopus 로고    scopus 로고
    • Topographica: Building and analyzing map-level simulations from Python, C/C++, MATLAB, NEST, or NEURON components
    • doi: 10.3389/neuro.11.008. 2009
    • Bednar, J. A. (2009). Topographica: building and analyzing map-level simulations from Python, C/C++, MATLAB, NEST, or NEURON components. Front. Neuroinform. 3:8. doi: 10.3389/neuro.11.008. 2009
    • (2009) Front. Neuroinform , vol.3 , pp. 8
    • Bednar, J.A.1
  • 3
    • 85010065988 scopus 로고    scopus 로고
    • Learning from the past: Approaches for reproducibility in computational neuroscience
    • ed J. Bower (New York, NY: Springer)
    • Crook, S. M., Davison, A. P., and Plesser, H. E. (2013). "Learning from the past: approaches for reproducibility in computational neuroscience," in 20 Years of Computational Neuroscience, ed J. Bower (New York, NY: Springer), 73-102.
    • (2013) 20 Years of Computational Neuroscience , pp. 73-102
    • Crook, S.M.1    Davison, A.P.2    Plesser, H.E.3
  • 5
    • 84864222718 scopus 로고    scopus 로고
    • Automated capture of experiment context for easier repro-ducibility in computational research
    • doi: 10.1109/MCSE.2012.41
    • Davison, A. (2012). Automated capture of experiment context for easier repro-ducibility in computational research. Comput. Sci. Eng. 14, 48-56. doi: 10.1109/MCSE.2012.41
    • (2012) Comput. Sci. Eng , vol.14 , pp. 48-56
    • Davison, A.1
  • 7
    • 84862703767 scopus 로고    scopus 로고
    • Exploring the coming repositories of reproducible experiments: Challenges and opportunities
    • Available online at
    • Freire, J., Bonnet, P., and Shasha, D. (2011). Exploring the coming repositories of reproducible experiments: challenges and opportunities. Proc. VLDB Endow. 4, 1494-1497. Available online at: http://www.vldb.org/pvldb/vol4/p1494-freire.pdf
    • (2011) Proc. VLDB Endow , vol.4 , pp. 1494-1497
    • Freire, J.1    Bonnet, P.2    Shasha, D.3
  • 8
    • 85013774401 scopus 로고    scopus 로고
    • Reproducibility using VisTrails
    • eds V. Stodden, F. Leisch, and R. Peng (Boca Raton, FL: Chapman & Hall/CRC), (in press). Available online at
    • Freire, J., Koop, D., Chirigati, F., and Silva, C. (2014). "Reproducibility using VisTrails," in Implementing Reproducible Computational Research, eds V. Stodden, F. Leisch, and R. Peng (Boca Raton, FL: Chapman & Hall/CRC), (in press). Available online at: http://www.crcpress.com/product/isbn/9781466561595
    • (2014) Implementing Reproducible Computational Research
    • Freire, J.1    Koop, D.2    Chirigati, F.3    Silva, C.4
  • 9
    • 43949092150 scopus 로고    scopus 로고
    • NEST (NEural Simulation Tool)
    • doi: 10.4249/scholarpedia.1430
    • Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430
    • (2007) Scholarpedia , vol.2 , pp. 1430
    • Gewaltig, M.-O.1    Diesmann, M.2
  • 10
    • 84885847922 scopus 로고    scopus 로고
    • Brian: A simulator for spiking neural networks in Python
    • doi: 10.3389/neuro.11.005.2008
    • Goodman, D. F. M., and Brette, R. (2008). Brian: a simulator for spiking neural networks in Python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008
    • (2008) Front. Neuroinform , vol.2 , pp. 5
    • Goodman, D.F.M.1    Brette, R.2
  • 11
    • 0031571202 scopus 로고    scopus 로고
    • The NEURON simulation environment
    • doi: 10.1162/neco.1997.9.6.1179
    • Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment. Neural Comput. 9, 1179-1209. doi: 10.1162/neco.1997.9.6.1179
    • (1997) Neural Comput , vol.9 , pp. 1179-1209
    • Hines, M.L.1    Carnevale, N.T.2
  • 12
    • 70049083053 scopus 로고    scopus 로고
    • Towards reproducible descriptions of neuronal network models
    • doi: 10.1371/journal.pcbi.1000456
    • Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible descriptions of neuronal network models. PLoS Comput. Biol. 5:e1000456. doi: 10.1371/journal.pcbi.1000456
    • (2009) PLoS Comput. Biol , vol.5
    • Nordlie, E.1    Gewaltig, M.-O.2    Plesser, H.E.3
  • 13
    • 34247481878 scopus 로고    scopus 로고
    • IPython: A system for interactive scientific computing
    • doi: 10.1109/MCSE.2007.53
    • Pérez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21-29. doi: 10.1109/MCSE.2007.53
    • (2007) Comput. Sci. Eng , vol.9 , pp. 21-29
    • Pérez, F.1    Granger, B.E.2
  • 14
    • 84884913611 scopus 로고    scopus 로고
    • Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex
    • doi: 10.1523/JNEUROSCI.1037-13.2013
    • Stevens, J.-L. R., Law, J. S., Antolík, J., and Bednar, J. A. (2013). Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. J. Neurosci. 33, 15747-15766. doi: 10.1523/JNEUROSCI.1037-13.2013
    • (2013) J. Neurosci , vol.33 , pp. 15747-15766
    • Stevens, J.-L.R.1    Law, J.S.2    Antolík, J.3    Bednar, J.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.