-
1
-
-
26444485498
-
Role of mitogen-activated protein kinases in hydrogen peroxide-induced cell death in osteoblastic cells
-
Park, B.G.; Yoo, C.I.; Kim, H.T.; Kwon, C.H.; Kim, Y.K. Role of mitogen-activated protein kinases in hydrogen peroxide-induced cell death in osteoblastic cells. Toxicology 2005, 215, 115-125.
-
(2005)
Toxicology
, vol.215
, pp. 115-125
-
-
Park, B.G.1
Yoo, C.I.2
Kim, H.T.3
Kwon, C.H.4
Kim, Y.K.5
-
2
-
-
33746632989
-
Hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells: The effects of glutamate and protection by purines
-
Fatokun, A.A.; Stone, T.W.; Smith, R.A. Hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells: The effects of glutamate and protection by purines. Bone 2006, 39, 542-551.
-
(2006)
Bone
, vol.39
, pp. 542-551
-
-
Fatokun, A.A.1
Stone, T.W.2
Smith, R.A.3
-
3
-
-
84860296724
-
AMP-activated protein kinase, stress responses and cardiovascular diseases
-
Wang, S.; Song, P.; Zou, M.H. AMP-activated protein kinase, stress responses and cardiovascular diseases. Clin. Sci. 2012, 122, 555-573.
-
(2012)
Clin. Sci
, vol.122
, pp. 555-573
-
-
Wang, S.1
Song, P.2
Zou, M.H.3
-
4
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13, 1016-1023.
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
5
-
-
84863763440
-
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
-
Jeon, S.M.; Chandel, N.S.; Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012, 485, 661-665.
-
(2012)
Nature
, vol.485
, pp. 661-665
-
-
Jeon, S.M.1
Chandel, N.S.2
Hay, N.3
-
6
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki, K.; Zhu, T.; Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115, 577-590.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
7
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444, 337-342.
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
Pearson, K.J.2
Price, N.L.3
Jamieson, H.A.4
Lerin, C.5
Kalra, A.6
Prabhu, V.V.7
Allard, J.S.8
Lopez-Lluch, G.9
Lewis, K.10
-
8
-
-
84880178227
-
Activation of AMP-activated protein kinase (AMPK) mediates plumbagin-induced apoptosis and growth inhibition in cultured human colon cancer cells
-
Chen, M.B.; Zhang, Y.; Wei, M.X.; Shen, W.; Wu, X.Y.; Yao, C.; Lu, P.H. Activation of AMP-activated protein kinase (AMPK) mediates plumbagin-induced apoptosis and growth inhibition in cultured human colon cancer cells. Cell Signal. 2013, 25, 1993-2002.
-
(2013)
Cell Signal
, vol.25
, pp. 1993-2002
-
-
Chen, M.B.1
Zhang, Y.2
Wei, M.X.3
Shen, W.4
Wu, X.Y.5
Yao, C.6
Lu, P.H.7
-
9
-
-
79958244812
-
Activation of AMP-activated protein kinase contributes to doxorubicin-induced cell death and apoptosis in cultured myocardial H9c2 cells
-
Chen, M.B.; Wu, X.Y.; Gu, J.H.; Guo, Q.T.; Shen, W.X.; Lu, P.H. Activation of AMP-activated protein kinase contributes to doxorubicin-induced cell death and apoptosis in cultured myocardial H9c2 cells. Cell Biochem. Biophys. 2011, 60, 311-322.
-
(2011)
Cell Biochem. Biophys
, vol.60
, pp. 311-322
-
-
Chen, M.B.1
Wu, X.Y.2
Gu, J.H.3
Guo, Q.T.4
Shen, W.X.5
Lu, P.H.6
-
10
-
-
79955019824
-
Activation of AMP-activated protein kinase is involved in vincristine-induced cell apoptosis in B16 melanoma cell
-
Chen, M.B.; Shen, W.X.; Yang, Y.; Wu, X.Y.; Gu, J.H.; Lu, P.H. Activation of AMP-activated protein kinase is involved in vincristine-induced cell apoptosis in B16 melanoma cell. J. Cell Physiol. 2011, 226, 1915-1925.
-
(2011)
J. Cell Physiol
, vol.226
, pp. 1915-1925
-
-
Chen, M.B.1
Shen, W.X.2
Yang, Y.3
Wu, X.Y.4
Gu, J.H.5
Lu, P.H.6
-
11
-
-
77951834544
-
Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells
-
Chen, L.; Xu, B.; Liu, L.; Luo, Y.; Yin, J.; Zhou, H.; Chen, W.; Shen, T.; Han, X.; Huang, S. Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Lab. Investig. 2010, 90, 762-773.
-
(2010)
Lab. Investig
, vol.90
, pp. 762-773
-
-
Chen, L.1
Xu, B.2
Liu, L.3
Luo, Y.4
Yin, J.5
Zhou, H.6
Chen, W.7
Shen, T.8
Han, X.9
Huang, S.10
-
12
-
-
84875672536
-
TAK1 activates AMPK-dependent cell death pathway in hydrogen peroxide-treated cardiomyocytes, inhibited by heat shock protein-70
-
Chen, Z.; Shen, X.; Shen, F.; Zhong, W.; Wu, H.; Liu, S.; Lai, J. TAK1 activates AMPK-dependent cell death pathway in hydrogen peroxide-treated cardiomyocytes, inhibited by heat shock protein-70. Mol. Cell. Biochem. 2013, 377, 35-44.
-
(2013)
Mol. Cell. Biochem
, vol.377
, pp. 35-44
-
-
Chen, Z.1
Shen, X.2
Shen, F.3
Zhong, W.4
Wu, H.5
Liu, S.6
Lai, J.7
-
13
-
-
57349088281
-
Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation
-
Liangpunsakul, S.; Wou, S.E.; Zeng, Y.; Ross, R.A.; Jayaram, H.N.; Crabb, D.W. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G1173-G1181.
-
(2008)
Am. J. Physiol. Gastrointest. Liver Physiol
, vol.295
-
-
Liangpunsakul, S.1
Wou, S.E.2
Zeng, Y.3
Ross, R.A.4
Jayaram, H.N.5
Crabb, D.W.6
-
14
-
-
34548188741
-
Self-eating and self-killing: Crosstalk between autophagy and apoptosis
-
Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2007, 8, 741-752.
-
(2007)
Nat. Rev. Mol. Cell Biol
, vol.8
, pp. 741-752
-
-
Maiuri, M.C.1
Zalckvar, E.2
Kimchi, A.3
Kroemer, G.4
-
15
-
-
27644466759
-
Autophagy and signaling: Their role in cell survival and cell death
-
Codogno, P.; Meijer, A.J. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 2005, 12, 1509-1518.
-
(2005)
Cell Death Differ
, vol.12
, pp. 1509-1518
-
-
Codogno, P.1
Meijer, A.J.2
-
16
-
-
0034537290
-
Autophagy as a regulated pathway of cellular degradation
-
Klionsky, D.J.; Emr, S.D. Autophagy as a regulated pathway of cellular degradation. Science 2000, 290, 1717-1721.
-
(2000)
Science
, vol.290
, pp. 1717-1721
-
-
Klionsky, D.J.1
Emr, S.D.2
-
17
-
-
25144506835
-
Autophagy in cell death: An innocent convict?
-
Levine, B.; Yuan, J. Autophagy in cell death: an innocent convict? J. Clin. Investig. 2005, 115, 2679-2688.
-
(2005)
J. Clin. Investig
, vol.115
, pp. 2679-2688
-
-
Levine, B.1
Yuan, J.2
-
18
-
-
0037276069
-
A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway
-
Kimura, N.; Tokunaga, C.; Dalal, S.; Richardson, C.; Yoshino, K.; Hara, K.; Kemp, B.E.; Witters, L.A.; Mimura, O.; Yonezawa, K. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 2003, 8, 65-79.
-
(2003)
Genes Cells
, vol.8
, pp. 65-79
-
-
Kimura, N.1
Tokunaga, C.2
Dalal, S.3
Richardson, C.4
Yoshino, K.5
Hara, K.6
Kemp, B.E.7
Witters, L.A.8
Mimura, O.9
Yonezawa, K.10
-
19
-
-
12844281251
-
AMPK, the metabolic syndrome and cancer
-
Luo, Z.; Saha, A.K.; Xiang, X.; Ruderman, N.B. AMPK, the metabolic syndrome and cancer. Trends Pharmacol. Sci. 2005, 26, 69-76.
-
(2005)
Trends Pharmacol. Sci
, vol.26
, pp. 69-76
-
-
Luo, Z.1
Saha, A.K.2
Xiang, X.3
Ruderman, N.B.4
-
20
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan, D.F.; Shackelford, D.B.; Mihaylova, M.M.; Gelino, S.; Kohnz, R.A.; Mair, W.; Vasquez, D.S.; Joshi, A.; Gwinn, D.M.; Taylor, R. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331, 456-461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
Gelino, S.4
Kohnz, R.A.5
Mair, W.6
Vasquez, D.S.7
Joshi, A.8
Gwinn, D.M.9
Taylor, R.10
-
21
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132-141.
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
22
-
-
0032881635
-
Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR
-
Russell, R.R., 3rd; Bergeron, R.; Shulman, G.I.; Young, L.H. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am. J. Physiol. 1999, 277, H643-H649.
-
(1999)
Am. J. Physiol
, vol.277
-
-
Russell III, R.R.1
Bergeron, R.2
Shulman, G.I.3
Young, L.H.4
-
23
-
-
33744514139
-
Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome
-
Cool, B.; Zinker, B.; Chiou, W.; Kifle, L.; Cao, N.; Perham, M.; Dickinson, R.; Adler, A.; Gagne, G.; Iyengar, R. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006, 3, 403-416.
-
(2006)
Cell Metab
, vol.3
, pp. 403-416
-
-
Cool, B.1
Zinker, B.2
Chiou, W.3
Kifle, L.4
Cao, N.5
Perham, M.6
Dickinson, R.7
Adler, A.8
Gagne, G.9
Iyengar, R.10
-
24
-
-
84891352333
-
Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells
-
De Meester, C.; Timmermans, A.D.; Balteau, M.; Ginion, A.; Roelants, V.; Noppe, G.; Porporato, P.E.; Sonveaux, P.; Viollet, B.; Sakamoto, K. et al. Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells. Cardiovasc. Res. 2014, 101, 20-29.
-
(2014)
Cardiovasc. Res
, vol.101
, pp. 20-29
-
-
de Meester, C.1
Timmermans, A.D.2
Balteau, M.3
Ginion, A.4
Roelants, V.5
Noppe, G.6
Porporato, P.E.7
Sonveaux, P.8
Viollet, B.9
Sakamoto, K.10
-
25
-
-
84900537112
-
Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662
-
Ducommun, S.; Ford, R.J.; Bultot, L.; Deak, M.; Bertrand, L.; Kemp, B.E.; Steinberg, G.R.; Sakamoto, K. Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E688-E696.
-
(2014)
Am. J. Physiol. Endocrinol. Metab
, vol.306
-
-
Ducommun, S.1
Ford, R.J.2
Bultot, L.3
Deak, M.4
Bertrand, L.5
Kemp, B.E.6
Steinberg, G.R.7
Sakamoto, K.8
-
26
-
-
54049120220
-
Activating mutations in ALK provide a therapeutic target in neuroblastoma
-
George, R.E.; Sanda, T.; Hanna, M.; Frohling, S.; Luther, W., 2nd; Zhang, J.; Ahn, Y.; Zhou, W.; London, W.B.; McGrady, P. et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 2008, 455, 975-978.
-
(2008)
Nature
, vol.455
, pp. 975-978
-
-
George, R.E.1
Sanda, T.2
Hanna, M.3
Frohling, S.4
Luther II, W.5
Zhang, J.6
Ahn, Y.7
Zhou, W.8
London, W.B.9
McGrady, P.10
-
27
-
-
70349115668
-
The PI3K/Akt/mTOR pathway as therapeutic target in neuroblastoma
-
Fulda, S. The PI3K/Akt/mTOR pathway as therapeutic target in neuroblastoma. Curr. Cancer Drug Targets 2009, 9, 729-737.
-
(2009)
Curr. Cancer Drug Targets
, vol.9
, pp. 729-737
-
-
Fulda, S.1
-
28
-
-
0027258968
-
Human neuroblastoma cells express alpha and beta platelet-derived growth factor receptors coupling with neurotrophic and chemotactic signaling
-
Matsui, T.; Sano, K.; Tsukamoto, T.; Ito, M.; Takaishi, T.; Nakata, H.; Nakamura, H.; Chihara, K. Human neuroblastoma cells express alpha and beta platelet-derived growth factor receptors coupling with neurotrophic and chemotactic signaling. J. Clin. Investig. 1993, 92, 1153-1160.
-
(1993)
J. Clin. Investig
, vol.92
, pp. 1153-1160
-
-
Matsui, T.1
Sano, K.2
Tsukamoto, T.3
Ito, M.4
Takaishi, T.5
Nakata, H.6
Nakamura, H.7
Chihara, K.8
-
29
-
-
84880511425
-
Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis
-
Wang, B.; Wang, X.B.; Chen, L.Y.; Huang, L.; Dong, R.Z. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis. Biochem. Biophys. Res. Commun. 2013, 437, 1-6.
-
(2013)
Biochem. Biophys. Res. Commun
, vol.437
, pp. 1-6
-
-
Wang, B.1
Wang, X.B.2
Chen, L.Y.3
Huang, L.4
Dong, R.Z.5
-
30
-
-
74849113290
-
The p53 target Plk2 interacts with TSC proteins impacting mTOR signaling, tumor growth and chemosensitivity under hypoxic conditions
-
Matthew, E.M.; Hart, L.S.; Astrinidis, A.; Navaraj, A.; Dolloff, N.G.; Dicker, D.T.; Henske, E.P.; El-Deiry, W.S. The p53 target Plk2 interacts with TSC proteins impacting mTOR signaling, tumor growth and chemosensitivity under hypoxic conditions. Cell Cycle 2009, 8, 4168-4175.
-
(2009)
Cell Cycle
, vol.8
, pp. 4168-4175
-
-
Matthew, E.M.1
Hart, L.S.2
Astrinidis, A.3
Navaraj, A.4
Dolloff, N.G.5
Dicker, D.T.6
Henske, E.P.7
El-Deiry, W.S.8
-
31
-
-
84898905272
-
Src-kinases and ERK activate distinct responses to Stitcher receptor tyrosine kinase signaling during wound healing in Drosophila
-
Tsarouhas, V.; Yao, L.; Samakovlis, C. Src-kinases and ERK activate distinct responses to Stitcher receptor tyrosine kinase signaling during wound healing in Drosophila. J. Cell Sci. 2014, 127, 1829-1839.
-
(2014)
J. Cell Sci
, vol.127
, pp. 1829-1839
-
-
Tsarouhas, V.1
Yao, L.2
Samakovlis, C.3
-
32
-
-
84871218486
-
Wogonin induced calreticulin/annexin A1 exposure dictates the immunogenicity of cancer cells in a PERK/AKT dependent manner
-
doi:10.1371/journal.pone.0050811
-
Yang, Y.; Li, X.J.; Chen, Z.; Zhu, X.X.; Wang, J.; Zhang, L.B.; Qiang, L.; Ma, Y.J.; Li, Z.Y.; Guo, Q.L. et al. Wogonin induced calreticulin/annexin A1 exposure dictates the immunogenicity of cancer cells in a PERK/AKT dependent manner. PLoS One 2012, 7, doi:10.1371/journal.pone.0050811.
-
(2012)
PLoS One
, vol.7
-
-
Yang, Y.1
Li, X.J.2
Chen, Z.3
Zhu, X.X.4
Wang, J.5
Zhang, L.B.6
Qiang, L.7
Ma, Y.J.8
Li, Z.Y.9
Guo, Q.L.10
|