메뉴 건너뛰기




Volumn 43, Issue 10, 2014, Pages 2570-2592

Adaptive mixtures of regressions: Improving predictive inference when population has changed

Author keywords

Bayesian inference; EM algorithm; MCMC algorithm; Mixture of regressions; Switching regression; Transfer learning

Indexed keywords

ALGORITHMS; BAYESIAN NETWORKS; INFERENCE ENGINES; MIXTURES;

EID: 84902687136     PISSN: 03610918     EISSN: 15324141     Source Type: Journal    
DOI: 10.1080/03610918.2012.758737     Document Type: Article
Times cited : (3)

References (30)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and amethod for prediction
    • Allen, D. M. (1974). The relationship between variable selection and data augmentation and amethod for prediction. Technometrics 16: 125-127.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.M.1
  • 2
    • 3843062291 scopus 로고    scopus 로고
    • Initializing em using the properties of its trajectories in Gaussian mixtures
    • Biernacki, C. (2004). Initializing EM using the properties of its trajectories in Gaussian mixtures. Statistics and Computing 14 (3): 267-279.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 267-279
    • Biernacki, C.1
  • 3
    • 0035989821 scopus 로고    scopus 로고
    • A generalized discriminant rule when training population and test population differ on their descriptive parameters
    • Biernacki, C., Beninel, F., Bretagnolle, V. (2002). A generalized discriminant rule when training population and test population differ on their descriptive parameters. Biometrics 58 (2): 387-397.
    • (2002) Biometrics , vol.58 , Issue.2 , pp. 387-397
    • Biernacki, C.1    Beninel, F.2    Bretagnolle, V.3
  • 5
    • 77957908636 scopus 로고    scopus 로고
    • Adaptive linear models for regression: Improving prediction when population has changed
    • Bouveyron, C., Jacques, J. (2010). Adaptive linear models for regression: Improving prediction when population has changed. Pattern Recognition Letters 31 (14): 2237-2247.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.14 , pp. 2237-2247
    • Bouveyron, C.1    Jacques, J.2
  • 6
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • Celeux, G., Hurn, M., Robert, C. (2000). Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association 95: 957-970.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.3
  • 8
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through Bayesian sampling
    • Diebolt, J., Robert, C. (1994). Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society. Series B 56 (2): 363-375.
    • (1994) Journal of the Royal Statistical Society. Series B , vol.56 , Issue.2 , pp. 363-375
    • Diebolt, J.1    Robert, C.2
  • 10
  • 13
    • 77951140579 scopus 로고    scopus 로고
    • Extension of model-based classification for binary data when training and test populations differ
    • Jacques, J., Biernacki, C. (2010). Extension of model-based classification for binary data when training and test populations differ. Journal of Applied Statistics 37 (5): 749-766.
    • (2010) Journal of Applied Statistics , vol.37 , Issue.5 , pp. 749-766
    • Jacques, J.1    Biernacki, C.2
  • 14
    • 35348854001 scopus 로고    scopus 로고
    • Variable selection in finite mixture of regression models
    • Khalili, A., Chen, J. (2007). Variable selection in finite mixture of regression models. Journal of the American Statistical Association 102 (479): 1025-1038.
    • (2007) Journal of the American Statistical Association , vol.102 , Issue.479 , pp. 1025-1038
    • Khalili, A.1    Chen, J.2
  • 19
    • 34247141560 scopus 로고    scopus 로고
    • Estimating the integrated likelihood via posterior simulation using the harmonic mean identity
    • Oxford: Oxford Sci. Publ. Oxford Univ. Press
    • Raftery, A. E., Newton, M. A., Satagopan, J. M., Krivitsky, P. N. (2007). Estimating the integrated likelihood via posterior simulation using the harmonic mean identity. In: Bayesian Statistics 8. Oxford: Oxford Sci. Publ. Oxford Univ. Press, pp. 371-416.
    • (2007) Bayesian Statistics , vol.8 , pp. 371-416
    • Raftery, A.E.1    Newton, M.A.2    Satagopan, J.M.3    Krivitsky, P.N.4
  • 22
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6 (2): 461-464.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 23
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the loglikelihood function
    • Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the loglikelihood function. Journal of Statistical Planning and Inference 90 (2): 227-244.
    • (2000) Journal of Statistical Planning and Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 25
    • 34249051141 scopus 로고    scopus 로고
    • Advances in Neural Information Processing Systems 19. Cambridge: MIT Press
    • Storkey, A., Sugiyama, M. (2007). Mixture Regression for Covariate Shift, Advances in Neural Information Processing Systems 19. Cambridge: MIT Press, pp. 1337-1344.
    • (2007) Mixture Regression for Covariate Shift , pp. 1337-1344
    • Storkey, A.1    Sugiyama, M.2
  • 26
    • 30744458353 scopus 로고    scopus 로고
    • Active learning in approximately linear regression based on conditional expectation of generalization error
    • Sugiyama, M. (2006). Active learning in approximately linear regression based on conditional expectation of generalization error. Journal of Machine Learning Research 7: 141-166.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 141-166
    • Sugiyama, M.1
  • 27
    • 34249027984 scopus 로고    scopus 로고
    • Input-dependent estimation of generalization error under covariate shift
    • Sugiyama, M., Müller, K.-R. (2005). Input-dependent estimation of generalization error under covariate shift. Statistics & Decisions 23: 249-279.
    • (2005) Statistics & Decisions , vol.23 , pp. 249-279
    • Sugiyama, M.1    Müller, K.-R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.