-
1
-
-
0000241853
-
Deterministic nonperiodic flow
-
E.N. Lorenz Deterministic nonperiodic flow J. Atmos. Sci. 20 1963 130 141
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
2
-
-
49549126801
-
An equation for continuous chaos
-
O.E. Rossler An equation for continuous chaos Phys. Lett. A 57 1976 397 398
-
(1976)
Phys. Lett. A
, vol.57
, pp. 397-398
-
-
Rossler, O.E.1
-
5
-
-
33846540826
-
Hopf bifurcation of the generalized Lorenz canonical form
-
DOI 10.1007/s11071-006-9036-x
-
T. Li, G. Chen, Y. Tang, and L. Yang Hopf bifurcation of the generalized Lorenz canonical form Nonlinear Dyn. 47 4 2007 367 375 (Pubitemid 46154544)
-
(2007)
Nonlinear Dynamics
, vol.47
, Issue.4
, pp. 367-375
-
-
Li, T.1
Chen, G.2
Tang, Y.3
Yang, L.4
-
6
-
-
84888342556
-
Bounds of solutions of a kind of hyper-chaotic systems and application
-
F. Zhang, Y. Li, and C. Mu Bounds of solutions of a kind of hyper-chaotic systems and application J. Math. Res. Appl. 33 3 2013 345 352
-
(2013)
J. Math. Res. Appl.
, vol.33
, Issue.3
, pp. 345-352
-
-
Zhang, F.1
Li, Y.2
Mu, C.3
-
7
-
-
84855782778
-
On the boundedness of solutions to the Lorenz-like family of chaotic systems
-
C. Mu, F. Zhang, Y. Shu, and S. Zhou On the boundedness of solutions to the Lorenz-like family of chaotic systems Nonlinear Dyn. 67 2 2012 987 996
-
(2012)
Nonlinear Dyn.
, vol.67
, Issue.2
, pp. 987-996
-
-
Mu, C.1
Zhang, F.2
Shu, Y.3
Zhou, S.4
-
8
-
-
84878695597
-
Constructing a chaotic system with any number of equilibria
-
X. Wang, and G. Chen Constructing a chaotic system with any number of equilibria Nonlinear Dyn. 71 3 2013 429 436
-
(2013)
Nonlinear Dyn.
, vol.71
, Issue.3
, pp. 429-436
-
-
Wang, X.1
Chen, G.2
-
9
-
-
84888375546
-
On the new results of global exponential attractive set
-
F. Zhang, C. Mu, L. Wang, G. Zhang, and I. Ahmed On the new results of global exponential attractive set Appl. Math. Lett. 28 2014 30 37
-
(2014)
Appl. Math. Lett.
, vol.28
, pp. 30-37
-
-
Zhang, F.1
Mu, C.2
Wang, L.3
Zhang, G.4
Ahmed, I.5
-
10
-
-
84893836047
-
Estimations for ultimate boundary of a new hyperchaotic system and its simulation
-
F. Zhang, C. Mu, L. Wang, X. Wang, and X. Yao Estimations for ultimate boundary of a new hyperchaotic system and its simulation Nonlinear Dyn. 75 2014 529 537
-
(2014)
Nonlinear Dyn.
, vol.75
, pp. 529-537
-
-
Zhang, F.1
Mu, C.2
Wang, L.3
Wang, X.4
Yao, X.5
-
11
-
-
84868088152
-
General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems
-
G. Leonov General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems Phys. Lett. A 376 2012 3045 3050
-
(2012)
Phys. Lett. A
, vol.376
, pp. 3045-3050
-
-
Leonov, G.1
-
12
-
-
4544372373
-
Lyapunov dimension formulas for Henon and Lorenz attractors
-
G. Leonov Lyapunov dimension formulas for Henon and Lorenz attractors St. Petersburg Math. J. 13 2001 1 12
-
(2001)
St. Petersburg Math. J.
, vol.13
, pp. 1-12
-
-
Leonov, G.1
-
14
-
-
84964265507
-
Analytical-numerical methods for hidden attractors' localization: The 16th Hilbert problem, Aizerman and Kalman conjectures, and Chua circuits, numerical methods for differential equations, optimization, and technological problems
-
G. Leonov, and N. Kuznetsov Analytical-numerical methods for hidden attractors' localization: the 16th Hilbert problem, Aizerman and Kalman conjectures, and Chua circuits, numerical methods for differential equations, optimization, and technological problems Comput. Methods Appl. Sci. 27 2013 41 64
-
(2013)
Comput. Methods Appl. Sci.
, vol.27
, pp. 41-64
-
-
Leonov, G.1
Kuznetsov, N.2
-
15
-
-
84874642094
-
Hidden attractors in dynamical systems. from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits
-
G. Leonov, and N. Kuznetsov Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits Int. J. Bifurc. Chaos Appl. Sci. Eng. 23 2013 1330002
-
(2013)
Int. J. Bifurc. Chaos Appl. Sci. Eng.
, vol.23
, pp. 1330002
-
-
Leonov, G.1
Kuznetsov, N.2
-
16
-
-
80052988208
-
Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua's circuits
-
V. Bragin, V. Vagaitsev, N. Kuznetsov, and G. Leonov Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua's circuits J. Comput. Syst. Sci. Int. 50 2011 511 543
-
(2011)
J. Comput. Syst. Sci. Int.
, vol.50
, pp. 511-543
-
-
Bragin, V.1
Vagaitsev, V.2
Kuznetsov, N.3
Leonov, G.4
-
17
-
-
80053159371
-
Hidden oscillations in dynamical systems
-
G. Leonov, N. Kuznetsov, O. Kuznetsova, S. Seledzhi, and V. Vagaitsev Hidden oscillations in dynamical systems Trans. Syst. Cont. 6 2 2011 54 67
-
(2011)
Trans. Syst. Cont.
, vol.6
, Issue.2
, pp. 54-67
-
-
Leonov, G.1
Kuznetsov, N.2
Kuznetsova, O.3
Seledzhi, S.4
Vagaitsev, V.5
-
19
-
-
79952290511
-
Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization
-
F. Zhang, Y. Shu, H. Yang, and X. Li Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization Chaos, Solitons Fractals 44 1-3 2011 137 144
-
(2011)
Chaos, Solitons Fractals
, vol.44
, Issue.13
, pp. 137-144
-
-
Zhang, F.1
Shu, Y.2
Yang, H.3
Li, X.4
-
20
-
-
77957344292
-
Bounds for a new chaotic system and its application in chaos synchronization
-
F. Zhang, Y. Shu, and H. Yang Bounds for a new chaotic system and its application in chaos synchronization Commun. Nonlinear Sci. Numer. Simul. 16 3 2011 1501 1508
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, Issue.3
, pp. 1501-1508
-
-
Zhang, F.1
Shu, Y.2
Yang, H.3
-
21
-
-
62949192764
-
Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system
-
D. Li, X. Wu, and J. Lu Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system Chaos, Solitons Fractals 39 2009 1290 1296
-
(2009)
Chaos, Solitons Fractals
, vol.39
, pp. 1290-1296
-
-
Li, D.1
Wu, X.2
Lu, J.3
-
22
-
-
84862793585
-
On the boundness of some solutions of the Lü system
-
F. Zhang, C. Mu, and X. Li On the boundness of some solutions of the Lü system Int. J. Bifurc. Chaos 22 1 2012 1 5
-
(2012)
Int. J. Bifurc. Chaos
, vol.22
, Issue.1
, pp. 1-5
-
-
Zhang, F.1
Mu, C.2
Li, X.3
-
23
-
-
64949138913
-
Solution bounds of generalized Lorenz chaotic systems
-
Y. Sun Solution bounds of generalized Lorenz chaotic systems Chaos, Solitons Fractals 40 2009 691 696
-
(2009)
Chaos, Solitons Fractals
, vol.40
, pp. 691-696
-
-
Sun, Y.1
-
25
-
-
40549096015
-
Active control and global synchronization of the complex chen and Lü systems
-
DOI 10.1142/S0218127407019962, PII S0218127407019962
-
G.M. Mahmoud, T. Bountis, and E.E. Mahmoud Active control and global synchronization for complex Chen and Lü systems Int. J. Bifurc. Chaos 17 2007 4295 4308 (Pubitemid 351365913)
-
(2007)
International Journal of Bifurcation and Chaos
, vol.17
, Issue.12
, pp. 4295-4308
-
-
Mahmoud, G.M.1
Bountis, T.2
Mahmoud, E.E.3
-
26
-
-
80052032851
-
Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters
-
S. Liu, and P. Liu Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters Nonlinear Anal. Real World Appl. 12 2011 3046 3055
-
(2011)
Nonlinear Anal. Real World Appl.
, vol.12
, pp. 3046-3055
-
-
Liu, S.1
Liu, P.2
-
27
-
-
0346154825
-
Anti-synchronization of chaotic oscillators
-
C.M. Kim, S. Rim, W.H. Kye, J.W. Ryu, and Y.J. Park Anti-synchronization of chaotic oscillators Phys. Lett. A 320 2003 39 46
-
(2003)
Phys. Lett. A
, vol.320
, pp. 39-46
-
-
Kim, C.M.1
Rim, S.2
Kye, W.H.3
Ryu, J.W.4
Park, Y.J.5
-
28
-
-
84888374097
-
Characteristics of time-delay complex Lorenz chaotic system and its self-synchronization of time delay
-
F. Zhang, S. Liu, and W. Yu Characteristics of time-delay complex Lorenz chaotic system and its self-synchronization of time delay Acta Phys. Sin. 62 22 2013 220505
-
(2013)
Acta Phys. Sin.
, vol.62
, Issue.22
, pp. 220505
-
-
Zhang, F.1
Liu, S.2
Yu, W.3
-
29
-
-
34250157760
-
Time-varying linearization and the perron effects
-
DOI 10.1142/S0218127407017732, PII S0218127407017732
-
G. Leonov, and N. Kuznetsov Time-varying linearization and the Perron effects Int. J. Bifurc. Chaos Appl. Sci. Eng. 17 2007 1079 1107 (Pubitemid 46905045)
-
(2007)
International Journal of Bifurcation and Chaos
, vol.17
, Issue.4
, pp. 1079-1107
-
-
Leonov, G.A.1
Kuznetsov, N.V.2
-
30
-
-
84886303693
-
Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor
-
N. Kuznetsov, T. Mokaev, and P. Vasilyev Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor Commun. Nonlinear Sci. Numer. Simul. 19 4 2014 1027 1034
-
(2014)
Commun. Nonlinear Sci. Numer. Simul.
, vol.19
, Issue.4
, pp. 1027-1034
-
-
Kuznetsov, N.1
Mokaev, T.2
Vasilyev, P.3
-
31
-
-
33746711700
-
On stability by the first approximation for discrete systems
-
DOI 10.1109/PHYCON.2005.1514053, 1514053, 2005 International Conference on Physics and Control, PhysCon 2005, Proceedings
-
N. Kuznetsov, G. Leonov, On stability by the first approximation for discrete systems, in: 2005 International Conference on Physics and Control, 2005, PhysCon 2005, Proceedings 2005, (1514053), 2005 pp. 596-599. (Pubitemid 44160099)
-
(2005)
2005 International Conference on Physics and Control, PhysCon 2005, Proceedings
, vol.2005
, pp. 596-599
-
-
Kuznetsov, N.V.1
Leonov, G.A.2
|