-
2
-
-
0035640984
-
Bound for attractors and the existence of homoclinic orbit in the Lorenz system
-
G.A. Leonov Bound for attractors and the existence of homoclinic orbit in the Lorenz system J. Appl. Math. Mech. 65 2001 19 32
-
(2001)
J. Appl. Math. Mech.
, vol.65
, pp. 19-32
-
-
Leonov, G.A.1
-
3
-
-
33746381950
-
On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization
-
X.X. Liao, Y.L. Fu, and S.L. Xie On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization Sci. China F 48 3 2005 304 321
-
(2005)
Sci. China F
, vol.48
, Issue.3
, pp. 304-321
-
-
Liao, X.X.1
Fu, Y.L.2
Xie, S.L.3
-
4
-
-
80052988208
-
Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua's circuits
-
V.O. Bragin, V.I. Vagaitsev, N.V. Kuznetsov, and G.A. Leonov Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua's circuits J. Comput. Syst. Sci. Int. 50 4 2011 511 543
-
(2011)
J. Comput. Syst. Sci. Int.
, vol.50
, Issue.4
, pp. 511-543
-
-
Bragin, V.O.1
Vagaitsev, V.I.2
Kuznetsov, N.V.3
Leonov, G.A.4
-
5
-
-
84874642094
-
Hidden attractors in dynamical systems. from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits
-
G.A. Leonov, and N.V. Kuznetsov Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits Internat. J. Bifur. Chaos Appl. Sci. Engrg. 23 1 2013 1330002
-
(2013)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.23
, Issue.1
, pp. 1330002
-
-
Leonov, G.A.1
Kuznetsov, N.V.2
-
6
-
-
77957344292
-
Bounds for a new chaotic system and its application in chaos synchronization
-
F.C. Zhang, Y.L. Shu, and H.L. Yang Bounds for a new chaotic system and its application in chaos synchronization Commun. Nonlinear Sci. Numer. Simul. 16 3 2011 1501 1508
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, Issue.3
, pp. 1501-1508
-
-
Zhang, F.C.1
Shu, Y.L.2
Yang, H.L.3
-
7
-
-
84888342556
-
Bounds of solutions of a kind of hyper-chaotic systems and application
-
F.C. Zhang, Y.H. Li, and C.L. Mu Bounds of solutions of a kind of hyper-chaotic systems and application J. Math. Res. Appl. 33 3 2013 345 352
-
(2013)
J. Math. Res. Appl.
, vol.33
, Issue.3
, pp. 345-352
-
-
Zhang, F.C.1
Li, Y.H.2
Mu, C.L.3
-
8
-
-
79952290511
-
Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization
-
F.C. Zhang, Y.L. Shu, H.L. Yang, and X.W. Li Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization Chaos Solitons Fractals 44 1 2011 137 144
-
(2011)
Chaos Solitons Fractals
, vol.44
, Issue.1
, pp. 137-144
-
-
Zhang, F.C.1
Shu, Y.L.2
Yang, H.L.3
Li, X.W.4
-
9
-
-
84904168388
-
The dynamical analysis of a new chaotic system and simulation
-
10.1002/mma.2939
-
F.C. Zhang, and C.L. Mu The dynamical analysis of a new chaotic system and simulation Math. Methods Appl. Sci. 2013 10.1002/mma.2939
-
(2013)
Math. Methods Appl. Sci.
-
-
Zhang, F.C.1
Mu, C.L.2
-
11
-
-
84888389785
-
The dynamical analysis of a disk dynamo system and its application in chaos synchronization
-
F.C. Zhang, Y.L. Shu, and X.Z. Yao The dynamical analysis of a disk dynamo system and its application in chaos synchronization Acta. Math. Appl. Sin. 36 2 2013 193 203
-
(2013)
Acta. Math. Appl. Sin.
, vol.36
, Issue.2
, pp. 193-203
-
-
Zhang, F.C.1
Shu, Y.L.2
Yao, X.Z.3
-
12
-
-
67649378978
-
Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor
-
X.F. Li, Y.D. Chu, J.D. Zhang, and Y.X. Chang Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor Chaos Solitons Fractals 41 5 2009 2360 2370
-
(2009)
Chaos Solitons Fractals
, vol.41
, Issue.5
, pp. 2360-2370
-
-
Li, X.F.1
Chu, Y.D.2
Zhang, J.D.3
Chang, Y.X.4
-
13
-
-
29144513852
-
A new butterfly-shaped attractor of Lorenz-like system
-
C.X. Liu, L. Liu, T. Liu, and P. Li A new butterfly-shaped attractor of Lorenz-like system Chaos Solitons Fractals 28 5 2006 1196 1203
-
(2006)
Chaos Solitons Fractals
, vol.28
, Issue.5
, pp. 1196-1203
-
-
Liu, C.X.1
Liu, L.2
Liu, T.3
Li, P.4
-
14
-
-
84864278119
-
Hidden attractor in smooth Chua systems
-
G.A. Leonov, N.V. Kuznetsov, and V.I. Vagaitsev Hidden attractor in smooth Chua systems Physica D 241 18 2012 1482 1486
-
(2012)
Physica D
, vol.241
, Issue.18
, pp. 1482-1486
-
-
Leonov, G.A.1
Kuznetsov, N.V.2
Vagaitsev, V.I.3
-
16
-
-
0002760968
-
Local instability and localization of attractors. from stochastic generator to Chua's systems
-
G.A. Leonov, D.V. Ponomarenko, and V.B. Smirnova Local instability and localization of attractors. From stochastic generator to Chua's systems Acta Appl. Math. 40 3 1995 179 243
-
(1995)
Acta Appl. Math.
, vol.40
, Issue.3
, pp. 179-243
-
-
Leonov, G.A.1
Ponomarenko, D.V.2
Smirnova, V.B.3
-
17
-
-
0030103592
-
Localization of the attractors of the non-autonomous Lienard equation by the method of discontinuous comparison systems
-
G.A. Leonov Localization of the attractors of the non-autonomous Lienard equation by the method of discontinuous comparison systems J. Appl. Math. Mech. 60 2 1996 329 332
-
(1996)
J. Appl. Math. Mech.
, vol.60
, Issue.2
, pp. 329-332
-
-
Leonov, G.A.1
|